Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103493

RESUMO

Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.


Assuntos
Condrócitos , Cápsula Articular , Osteoartrite , Engenharia Tecidual/métodos , Ferimentos e Lesões , Animais , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Cápsula Articular/lesões , Cápsula Articular/metabolismo , Cápsula Articular/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Engenharia Tecidual/tendências , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
2.
Polymers (Basel) ; 15(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242899

RESUMO

Articular cartilage is a specialized tissue that provides a smooth surface for joint movement and load transmission. Unfortunately, it has limited regenerative capacity. Tissue engineering, combining different cell types, scaffolds, growth factors, and physical stimulation has become an alternative for repairing and regenerating articular cartilage. Dental Follicle Mesenchymal Stem Cells (DFMSCs) are attractive candidates for cartilage tissue engineering because of their ability to differentiate into chondrocytes, on the other hand, the polymers blend like Polycaprolactone (PCL) and Poly Lactic-co-Glycolic Acid (PLGA) have shown promise given their mechanical properties and biocompatibility. In this work, the physicochemical properties of polymer blends were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) and were positive for both techniques. The DFMSCs demonstrated stemness by flow cytometry. The scaffold showed to be a non-toxic effect when we evaluated it with Alamar blue, and the samples were analyzed using SEM and phalloidin staining to evaluate cell adhesion to the scaffold. The synthesis of glycosaminoglycans was positive on the construct in vitro. Finally, the PCL/PLGA scaffold showed a better repair capacity than two commercial compounds, when tested in a chondral defect rat model. These results suggest that the PCL/PLGA (80:20) scaffold may be suitable for applications in the tissue engineering of articular hyaline cartilage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa