Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 17(4)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35349985

RESUMO

Small-scale unmanned air vehicles require lightweight, compact, and low-power sensors that encompass a variety of sensing modalities to enable flight control and navigation in challenging environments. Flow sensing is one such modality that has attracted much interest in recent years. In this paper, a micro-scale artificial hair sensor is developed to resolve both the direction and magnitude of airflow. The sensor structure employs a high-aspect ratio hair structure and a thin flexible membrane to facilitate the transduction of directional airflow to membrane deflection. The sensor readout is based on capacitive sensing and two pairs of electrodes orthogonal to each other are used to obtain airflow directional information. The sensor structure was fabricated using two-photon polymerization and integration onto a miniature printed circuit board to enable simple measurement. The sensor's responses to static displacement loading from different directions were characterized. The experimental results are in good agreement with the simulation results. Furthermore, the sensor's capability to measure the direction and magnitude of flow was demonstrated. Finally, the sensor was mounted on an airfoil and its ability to detect flow separation was verified.


Assuntos
Biomimética , Cabelo , Eletrodos , Impressão Tridimensional
2.
Beilstein J Nanotechnol ; 10: 32-46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680277

RESUMO

Background: Flow stimuli in the natural world are varied and contain a wide variety of directional information. Nature has developed morphological polarity and bidirectional arrangements for flow sensing to filter the incoming stimuli. Inspired by the neuromasts found in the lateral line of fish, we present a novel flow sensor design based on two curved cantilevers with bending orientation antiparallel to each other. Antiparallel cantilever pairs were designed, fabricated and compared to a single cantilever based hair sensor in terms of sensitivity to temperature changes and their response to changes in relative air flow direction. Results: In bidirectional air flow, antiparallel cantilever pairs exhibit an axially symmetrical sensitivity between 40 µV/(m s-1) for the lower air flow velocity range (between ±10-20 m s-1) and 80 µV/(m s-1) for a higher air flow velocity range (between ±20-32 m s-1). The antiparallel cantilever design improves directional sensitivity and provides a sinusoidal response to flow angle. In forward flow, the single sensor reaches its saturation limitation, flattening at 67% of the ideal sinusoidal curve which is earlier than the antiparallel cantilevers at 75%. The antiparallel artificial hair sensor better compensates for temperature changes than the single sensor. Conclusion: This work demonstrated the successive improvement of the bidirectional sensitivity, that is, improved temperature compensation, decreased noise generation and symmetrical response behaviour. In the antiparallel configuration, one of the two cantilevers always extends out into the free stream flow, remaining sensitive to directional flow and preserving a sensitivity to further flow stimuli.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa