Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679033

RESUMO

High-throughput chromosome conformation capture (Hi-C) is widely used for scaffolding in de novo assembly because it produces highly contiguous genomes, but its indirect statistical approach can introduce connection errors. We employed optical mapping (Bionano Genomics) as an orthogonal scaffolding technology to assess the structural solidity of Hi-C reconstructed scaffolds. Optical maps were used to assess the correctness of five de novo genome assemblies based on long-read sequencing for contig generation and Hi-C for scaffolding. Hundreds of inconsistencies were found between the reconstructions generated using the Hi-C and optical mapping approaches. Manual inspection, exploiting raw long-read sequencing data and optical maps, confirmed that several of these conflicts were derived from Hi-C joining errors. Such misjoins were widespread, involved the connection of both small and large contigs, and even overlapped annotated genes. We conclude that the integration of optical mapping data after, not before, Hi-C-based scaffolding, improves the quality of the assembly and limits reconstruction errors by highlighting misjoins that can then be subjected to further investigation.

2.
Biochem Biophys Rep ; 29: 101218, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128084

RESUMO

PURPOSE: The objective of this study is to validate the existence of dual cores within the typical phosphotyrosine binding (PTB) domain and to identify potentially damaging and pathogenic nonsynonymous coding single nuclear polymorphisms (nsSNPs) in the canonical PTB domain of the CCM2 gene that causes cerebral cavernous malformations (CCMs). METHODS: The nsSNPs within the coding sequence for PTB domain of human CCM2 gene, retrieved from exclusive database searches, were analyzed for their functional and structural impact using a series of bioinformatic tools. The effects of mutations on the tertiary structure of the PTB domain in human CCM2 protein were predicted to examine the effect of nsSNPs on the tertiary structure of PTB Cores. RESULTS: Our mutation analysis, through alignment of protein structures between wildtype CCM2 and mutant, predicted that the structural impacts of pathogenic nsSNPs is biophysically limited to only the spatially adjacent substituted amino acid site with minimal structural influence on the adjacent core of the PTB domain, suggesting both cores are independently functional and essential for proper CCM2 PTB function. CONCLUSION: Utilizing a combination of protein conservation and structure-based analysis, we analyzed the structural effects of inherited pathogenic mutations within the CCM2 PTB domain. Our results predicted that the pathogenic amino acid substitutions lead to only subtle changes locally, confined to the surrounding tertiary structure of the PTB core within which it resides, while no structural disturbance to the neighboring PTB core was observed, reaffirming the presence of independently functional dual cores in the CCM2 typical PTB domain.

3.
Int J Fertil Steril ; 14(2): 102-109, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32681621

RESUMO

BACKGROUND: The present study has been designed with the aim of evaluating A-kinase anchoring proteins 3 (AKAP3) and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) gene mutations and prediction of 3D protein structure for ligand binding activity in the cases of non-obstructive azoospermic male. MATERIALS AND METHODS: Clinically diagnosed cases of non-obstructive azoospermia (n=111) with age matched controls (n=42) were included in the present case-control study for genetics analysis and confirmation of diagnosis. The sample size was calculated using Epi info software version 6 with 90 power and 95% confidence interval. Genomic DNA was isolated from blood (2.0 ml) and a selected case was used for whole exome sequencing (WES) using Illumina Hiseq for identification of the genes. Bioinformatic tools were used for decode the amino acid sequence from biological database (www.ncbi.nlm.nih.gov/protein). 3D protein structure of AKAP3 and PLOD3 genes was predicted using I-TASSER server and binding energy was calculated by Ramachandran plot. RESULTS: Present study revealed the mutation of AKAP3 gene, showing frameshift mutation at rs67512580 (ACT → -CT) and loss of adenine in homozygous condition, where, leucine changed into serine. Similarly, PLOD3 gene shows missense mutation in heterozygous condition due to loss of guanine in the sequence AGG→A-G and it is responsible for the change in post-translational event of amino acid where arginine change into lysine. 3D structure shows 8 and 4 pockets binding site in AKAP3 and PLOD3 gene encoded proteins with MTX respectively, but only one site bound to the receptor with less binding energy representing efficient model of protein structure. CONCLUSION: These genetic variations are responsible for alteration of translational events of amino acid sequences, leading to protein synthesis change following alteration in the predicted 3D structure and functions during spermiogenesis, which might be a causative "risk" factor for male infertility.

4.
Comput Struct Biotechnol J ; 18: 1363-1382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637036

RESUMO

Usherin is the most common causative protein associated with autosomal recessive retinitis pigmentosa (RP) and Usher syndrome (USH), which are characterized by retinal degeneration alone and in combination with hearing loss, respectively. Usherin is essential for photoreceptor survival and hair cell bundle integrity. However, the molecular mechanism underlying usherin function in normal and disease conditions is unclear. In this study, we investigated structural models of usherin domains and localization of usherin pathogenic small in-frame mutations, mainly homozygous missense mutations. We found that usherin fibronectin III (FN3) domains and most laminin-related domains have a ß-sandwich structure. Some FN3 domains are predicted to interact with each other and with laminin-related domains. The usherin protein may bend at some FN3 linker regions. RP- and USH-associated small in-frame mutations are differentially located in usherin domains. Most of them are located at the periphery of ß-sandwiches, with some at the interface between interacting domains. The usherin laminin epidermal growth factor repeats adopt a rod-shaped structure, which is maintained by disulfide bonds. Most missense mutations and deletion of exon 13 in this region disrupt the disulfide bonds and may affect local protein folding. Despite low expression of the recombinant entire protein and protein fragments in mammalian cell culture, usherin FN3 fragments are more robustly expressed and secreted than its laminin-related fragments. Our findings provide new insights into the usherin structure and the disease mechanisms caused by pathogenic small in-frame mutations, which will help inform future experimental research on diagnosis, disease mechanisms, and therapeutic approaches.

5.
J Biomol Struct Dyn ; 37(3): 781-795, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29447108

RESUMO

Prostate cancer (PC) is one of the leading cancers in men, raising a serious health issue worldwide. Due to lack of suitable biomarker, their inhibitors and the platform for testing those inhibitors result in poor prognosis of PC. AMP-activated protein kinase (AMPK) is a highly conserved protein kinase found in eukaryotes that is involved in growth and development, and also acts as a therapeutic target for PC. The aim of the present study is to identify novel potent inhibitors of AMPK and propose a simple cellular model system for understanding its biology. Structural modelling and MD simulations were performed to construct and refine the 3D models of Dictyostelium and human AMPK. Binding mechanisms of different drug compounds were studied by performing molecular docking, molecular dynamics and MM-PBSA methods. Two novel drugs were isolated having higher binding affinity over the known drugs and hydrophobic forces that played a key role during protein-ligand interactions. The study also explored the simple cellular model system for drug screening and understanding the biology of a therapeutic target by performing in vitro experiments.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Humanos , Ligantes , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/metabolismo , Termodinâmica
6.
Meta Gene ; 4: 107-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25941634

RESUMO

The recent advances in high throughput sequencing technology accelerate possible ways for the study of genome wide variation in several organisms and associated consequences. In the present study, mutations in TGFBR3 showing significant association with FCR trait in chicken during exome sequencing were further analyzed. Out of four SNPs, one nsSNP p.Val451Leu was found in the coding region of TGFBR3. In silico tools such as SnpSift and PANTHER predicted it as deleterious (0.04) and to be tolerated, respectively, while I-Mutant revealed that protein stability decreased. The TGFBR3 I-TASSER model has a C-score of 0.85, which was validated using PROCHECK. Based on MD simulation, mutant protein structure deviated from native with RMSD 0.08 Å due to change in the H-bonding distances of mutant residue. The docking of TGFBR3 with interacting TGFBR2 inferred that mutant required more global energy. Therefore, the present study will provide useful information about functional SNPs that have an impact on FCR traits.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa