Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurophysiol ; 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583974

RESUMO

After acoustic overexposure, many auditory-nerve fiber (ANF) synapses permanently retract from surviving cochlear hair cells. This synaptopathy is hard to diagnose, since it does not elevate audiometric thresholds until almost no synapses remain, nevertheless it may degrade discrimination of complex stimuli especially in noisy environments. Here, we study an assay based on masking the auditory brainstem responses (ABRs) to a moderate-level probe tone with continuous noise of varied sound levels, and we investigate the underlying ANF responses at the single-fiber level. Synaptopathy was induced by overexposure to octave-band noise, resulting in a permanent synaptic loss of ~50%, without permanent threshold elevation except at the highest frequencies. The normal progressive delay of ABR peaks with increasing masker level is diminished in synaptopathic ears; however, the single-fiber analysis suggests that this normal latency shift does not arise because contributing ANFs shift from low-threshold fibers (with high spontaneous rates) to high-threshold fibers (with low spontaneous rates). Rather, it may arise because of a shift in the cochlear region dominating the response. Surprisingly, the dynamic range of masking, i.e. the difference between the lowest masker level that attenuates the ABR to a fixed-level probe and the lowest masker level that eliminates the ABR, is enhanced in the synaptopathic ears. This ABR behavior mirrors the single-fiber data showing a paradoxical enhancement of onset-response synchrony and resistance to masking in responses of ANFs in the synaptopathic regions. An assay based on the dynamic range of masking could be useful in diagnosing synaptic damage in human populations.

2.
J Neurosci ; 36(41): 10584-10597, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733610

RESUMO

Auditory nerve fibers (ANFs) exhibit a range of spontaneous firing rates (SRs) that are inversely correlated with threshold for sounds. To probe the underlying mechanisms and time course of SR differentiation during cochlear maturation, loose-patch extracellular recordings were made from ANF dendrites using acutely excised rat cochlear preparations of different ages after hearing onset. Diversification of SRs occurred mostly between the second and the third postnatal week. Statistical properties of ANF spike trains showed developmental changes that approach adult-like features in older preparations. Comparison with intracellularly recorded EPSCs revealed that most properties of ANF spike trains derive from the characteristics of presynaptic transmitter release. Pharmacological tests and waveform analysis showed that endogenous firing produces some fraction of ANF spikes, accounting for their unusual properties; the endogenous firing diminishes gradually during maturation. Paired recordings showed that ANFs contacting the same inner hair cell could have different SRs, with no correlation in their spike timing. SIGNIFICANCE STATEMENT: The inner hair cell (IHC)/auditory nerve fiber (ANF) synapse is the first synapse of the auditory pathway. Remarkably, each IHC is the sole partner of 10-30 ANFs with a range of spontaneous firing rates (SRs). Low and high SR ANFs respond to sound differently, and both are important for encoding sound information across varying acoustical environments. Here we demonstrate SR diversification after hearing onset by afferent recordings in acutely excised rat cochlear preparations. We describe developmental changes in spike train statistics and endogenous firing in immature ANFs. Dual afferent recordings provide the first direct evidence that fibers with different SRs contact the same IHCs and do not show correlated spike timing at rest. These results lay the groundwork for understanding the differential sensitivity of ANFs to acoustic trauma.


Assuntos
Vias Auditivas/fisiologia , Audição/fisiologia , Fibras Nervosas/fisiologia , Período Refratário Eletrofisiológico/fisiologia , Animais , Vias Auditivas/citologia , Vias Auditivas/crescimento & desenvolvimento , Cóclea/crescimento & desenvolvimento , Cóclea/fisiologia , Potenciais Evocados Auditivos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Células Ciliadas Auditivas Internas/fisiologia , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
3.
J Assoc Res Otolaryngol ; 25(4): 341-354, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937328

RESUMO

To enable nervous system function, neurons are powered in a use-dependent manner by mitochondria undergoing morphological-functional adaptation. In a well-studied model system-the mammalian cochlea, auditory nerve fibers (ANFs) display distinct electrophysiological properties, which is essential for collectively sampling acoustic information of a large dynamic range. How exactly the associated mitochondrial networks are deployed in functionally differentiated ANFs remains scarcely interrogated. Here, we leverage volume electron microscopy and machine-learning-assisted image analysis to phenotype mitochondrial morphology and distribution along ANFs of full-length in the mouse cochlea inner spiral bundle. This reveals greater variance in mitochondrial size with increased ANF habenula to terminal path length. Particularly, we analyzed the ANF terminal-residing mitochondria, which are critical for local calcium uptake during sustained afferent activities. Our results suggest that terminal-specific enrichment of mitochondria, in addition to terminal size and overall mitochondrial abundance of the ANF, correlates with heterogenous mitochondrial contents of the terminal.


Assuntos
Nervo Coclear , Mitocôndrias , Animais , Mitocôndrias/ultraestrutura , Camundongos , Nervo Coclear/ultraestrutura , Nervo Coclear/fisiologia , Microscopia Eletrônica , Fibras Nervosas/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL
4.
Hear Res ; 418: 108458, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334332

RESUMO

Hearing loss in patients with vestibular schwannoma (VS) is commonly attributed to mechanical compression of the auditory nerve, though recent studies suggest that this retrocochlear pathology may be augmented by cochlear damage. Although VS-associated loss of inner hair cells, outer hair cells, and spiral ganglion cells has been reported, it is unclear to what extent auditory-nerve peripheral axons are damaged in VS patients. Understanding the degree of damage VSs cause to auditory nerve fibers (ANFs) is important for accurately modeling clinical outcomes of cochlear implantation, which is a therapeutic option to rehabilitate hearing in VS-affected ears. A retrospective analysis of human temporal-bone histopathology was performed on archival specimens from the Massachusetts Eye and Ear collection. Seven patients met our inclusion criteria based on the presence of sporadic, unilateral, untreated VS. Tangential sections of five cochlear regions were stained with hematoxylin and eosin, and adjacent sections were stained to visualize myelinated ANFs and efferent fibers. Following confocal microscopy, peripheral axons of ANFs within the osseous spiral lamina were quantified manually, where feasible, and with a "pixel counting" method, applicable to all sections. ANF density was substantially reduced on the VS side compared to the unaffected contralateral side. In the upper basal turn, a significant difference between the VS side and unaffected contralateral side was found using both counting methods, corresponding to the region tuned to 2000 Hz. Even spiral ganglion cells (SGCs) contralateral to VS were affected by the tumor as the majority of contralateral SGC counts were below average for age. This observation provides histological insight into the clinical observation that unilateral vestibular schwannomas pose a long-term risk of progression of hearing loss in the contralateral ear as well. Our pixel counting method for ANF quantification in the osseous spiral lamina is applicable to other pathologies involving sensorineural hearing loss. Future research is needed to classify ANFs into morphological categories, accurately predict their electrical properties, and use this knowledge to inform optimal cochlear implant programming strategies.


Assuntos
Surdez , Perda Auditiva , Neuroma Acústico , Humanos , Nervo Coclear/patologia , Surdez/patologia , Perda Auditiva/patologia , Neuroma Acústico/patologia , Estudos Retrospectivos , Gânglio Espiral da Cóclea/patologia , Lâmina Espiral
5.
Exp Neurobiol ; 31(4): 243-259, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36050224

RESUMO

Cochlear afferent nerve fibers (ANF) are the first neurons in the ascending auditory pathway. We investigated the low-voltage activating K+ channels expressed in ANF dendrites using isolated rat cochlear segments. Whole cell patch clamp recordings were made from the dendritic terminals of ANFs. Outward currents activating at membrane potentials as low as -64 mV were observed in all dendrites studied. These currents were inhibited by 4-aminopyridine (4-AP), a blocker known to preferentially inhibit low-voltage activating K+ currents (IKL) in CNS auditory neurons and spiral ganglion neurons. When the dendritic IKL was blocked by 4-AP, the EPSP decay time was significantly prolonged, suggesting that dendritic IKL speeds up the decay of EPSPs and likely modulates action potentials of ANFs. To reveal molecular subtype of dendritic IKL, α-dendrotoxin (α-DTX), a selective inhibitor for Kv1.1, Kv1.2, and Kv1.6 containing channels, was tested. α-DTX inhibited 23±9% of dendritic IKL. To identify the α-DTXsensitive and α-DTX-insensitive components of IKL, immunofluorescence labeling was performed. Strong Kv1.1- and Kv1.2-immunoreactivity was found at unmyelinated dendritic segments, nodes of Ranvier, and cell bodies of most ANFs. A small fraction of ANF dendrites showed Kv7.2- immunoreactivity. These data suggest that dendritic IKL is conducted through Kv1.1and Kv1.2 channels, with a minor contribution from Kv7.2 and other as yet unidentified channels.

6.
J Neurosci Methods ; 358: 109212, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957156

RESUMO

BACKGROUND: Models of auditory nerve fiber (ANF) responses to electrical stimulation are helpful to develop advanced coding for cochlear implants (CIs). A phenomenological model of ANF population responses to CI electrical stimulation with a lower computational complexity compared to a biophysical model would be beneficial to evaluate new CI coding strategies. NEW METHOD: This study presents a phenomenological model which combines four temporal characteristics of ANFs (refractoriness, facilitation, accommodation and spike rate adaptation) in addition to a spatial spread of the electric field. RESULTS: The model predicts the performances of CI subjects in the melodic contour identification (MCI) experiment. The simulations for the MCI experiment were consistent with CI recipients' experimental outcomes that were not predictable from the electrical stimulation patterns themselves. COMPARISON WITH EXISTING METHODS: Previously, no phenomenological population model of ANFs has combined all four aforementioned temporal phenomena. CONCLUSIONS: The proposed model would help the further investigations of ANFs responses to different electrical stimulation patterns and comparison of different sound coding strategies in CIs.


Assuntos
Implante Coclear , Implantes Cocleares , Estimulação Acústica , Nervo Coclear , Estimulação Elétrica , Humanos
7.
J Med Signals Sens ; 11(3): 169-176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466396

RESUMO

BACKGROUND: The goal of the current research is to develop a model based on computer simulations which describes both the behavior of the auditory nerve fibers and the cochlear implant system as a rehabilitation device. METHODS: The approximate method was proposed as a low error and fast tool for predicting the behavior of auditory nerve fibers as well as the evoked compound action potential (ECAP) signal. In accurate methods every fiber is simulated; whereas, in approximate method information related to the response of every fiber and its characteristics such as the activation threshold of cochlear fibers are saved and interpolated to predict the behavior of a set of nerve fibers. RESULTS: The approximate model can predict and analyze different stimulation techniques. Although precision is reduced to <1.66% of the accurate method, the required execution time for simulation is reduced by more than 98%. CONCLUSION: The amplitudes of the ECAP signal and the growth function were investigated by changing the parameters of the approximate model including geometrical parameters, electrical, and temporal parameters. In practice, an audiologist can tune the stimulation parameters to reach an effective restoration of the acoustic signal.

8.
Front Cell Neurosci ; 15: 699978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385909

RESUMO

Previous work in animals with recovered hearing thresholds but permanent inner hair cell synapse loss after noise have suggested initial vulnerability of low spontaneous rate (SR) auditory nerve fibers (ANF). As these fibers have properties of response that facilitate robust sound coding in continuous noise backgrounds, their targeted loss would have important implications for function. To address the issue of relative ANF vulnerabilities after noise, we assessed cochlear physiologic and histologic consequences of temporary threshold shift-producing sound over-exposure in the gerbil, a species with well-characterized distributions of auditory neurons by SR category. The noise exposure targeted a cochlear region with distributed innervation (low-, medium- and high-SR neurons). It produced moderate elevations in outer hair cell-based distortion-product otoacoustic emission and whole nerve compound action potential thresholds in this region, with accompanying reductions in suprathreshold response amplitudes, quantified at 24 h. These parameters of response recovered well with post-exposure time. Chronic synapse loss was maximum in the frequency region initially targeted by the noise. Cochlear round window recorded mass potentials (spontaneous neural noise and sound-driven peri-stimulus time responses, PSTR) reflected parameters of the loss not detected by the conventional assays. Spontaneous activity was acutely reduced. Steady-state (PSTR plateau) activity was correlated with synapse loss in frequency regions with high concentrations of low-SR neurons, whereas the PSTR onset peak and spontaneous round window noise, both dominated by high-SR fiber activity, were relatively unaltered across frequency in chronic ears. Together, results suggest that acute targets of noise were of mixed SR subtypes, but chronic targets were predominantly low-SR neurons. PSTRs captured key properties of the auditory nerve response and vulnerability to injury that should yield important diagnostic information in hearing loss etiologies producing cochlear synaptic and neural loss.

9.
Front Synaptic Neurosci ; 13: 680621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290596

RESUMO

Hearing depends on glutamatergic synaptic transmission mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs are tetramers, where inclusion of the GluA2 subunit reduces overall channel conductance and Ca2+ permeability. Cochlear afferent synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) contain the AMPAR subunits GluA2, 3, and 4. However, the tetrameric complement of cochlear AMPAR subunits is not known. It was recently shown in mice that chronic intracochlear delivery of IEM-1460, an antagonist selective for GluA2-lacking AMPARs [also known as Ca2+-permeable AMPARs (CP-AMPARs)], before, during, and after acoustic overexposure prevented both the trauma to ANF synapses and the ensuing reduction of cochlear nerve activity in response to sound. Surprisingly, baseline measurements of cochlear function before exposure were unaffected by chronic intracochlear delivery of IEM-1460. This suggested that cochlear afferent synapses contain GluA2-lacking CP-AMPARs alongside GluA2-containing Ca2+-impermeable AMPA receptors (CI-AMPARs), and that the former can be antagonized for protection while the latter remain conductive. Here, we investigated hearing function in the guinea pig during acute local or systemic delivery of CP-AMPAR antagonists. Acute intracochlear delivery of IEM-1460 or systemic delivery of IEM-1460 or IEM-1925 reduced the amplitude of the ANF compound action potential (CAP) significantly, for all tone levels and frequencies, by > 50% without affecting CAP thresholds or distortion product otoacoustic emissions (DPOAE). Following systemic dosing, IEM-1460 levels in cochlear perilymph were ~ 30% of blood levels, on average, consistent with pharmacokinetic properties predicting permeation of the compounds into the brain and ear. Both compounds were metabolically stable with half-lives >5 h in vitro, and elimination half-lives in vivo of 118 min (IEM-1460) and 68 min (IEM-1925). Heart rate monitoring and off-target binding assays suggest an enhanced safety profile for IEM-1925 over IEM-1460. Compound potency on CAP reduction (IC50 ~ 73 µM IEM-1460) was consistent with a mixture of GluA2-lacking and GluA2-containing AMPARs. These data strongly imply that cochlear afferent synapses of the guinea pig contain GluA2-lacking CP-AMPARs. We propose these CP-AMPARs may be acutely antagonized with systemic dosing, to protect from glutamate excitotoxicity, while transmission at GluA2-containing AMPARs persists to mediate hearing during the protection.

10.
J Comp Neurol ; 529(16): 3633-3654, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34235739

RESUMO

Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation. Ephrin-A3 forward signaling is sufficient to repel auditory nerve fibers in a developmental stage-dependent manner. In mice lacking ephrin-A3, the tonotopic map is degraded and isofrequency bands of neuronal activation upon pure tone exposure become imprecise in the anteroventral cochlear nucleus. Ephrin-A3 mutant mice also exhibit a delayed second wave in auditory brainstem responses upon sound stimuli and impaired detection of sound frequency changes. Our findings establish an essential role for ephrin-A3 in forming precise tonotopy in the auditory brainstem to ensure accurate sound discrimination.


Assuntos
Tronco Encefálico/fisiologia , Efrina-A3/genética , Efrina-A3/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Estimulação Acústica , Animais , Audiometria de Tons Puros , Mapeamento Encefálico , Núcleo Coclear/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Discriminação da Altura Tonal
11.
Neuroscience ; 446: 43-58, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866604

RESUMO

Cochlear neurons innervate the brainstem cochlear nucleus in a tonotopic fashion according to their sensitivity to different sound frequencies (known as the neuron's characteristic frequency). It is unclear whether these neurons with distinct characteristic frequencies use different strategies to innervate the cochlear nucleus. Here, we use genetic approaches to differentially label spiral ganglion neurons (SGNs) and their auditory nerve fibers (ANFs) that relay different characteristic frequencies in mice. We found that SGN populations that supply distinct regions of the cochlea employ different cellular strategies to target and innervate neurons in the cochlear nucleus during tonotopic map formation. ANFs that will exhibit high-characteristic frequencies initially overshoot and sample a large area of targets before refining their connections to correct targets, while fibers that will exhibit low-characteristic frequencies are more accurate in initial targeting and undergo minimal target sampling. Moreover, similar to their peripheral projections, the central projections of ANFs show a gradient of development along the tonotopic axis, with outgrowth and branching of prospective high-frequency ANFs initiated about two days earlier than those of prospective low-frequency ANFs. The processes of synaptogenesis are similar between high- and low-frequency ANFs, but a higher proportion of low-frequency ANFs form smaller endbulb synaptic endings. These observations reveal the diversity of cellular mechanisms that auditory neurons that will become functionally distinct use to innervate their targets during tonotopic map formation.


Assuntos
Núcleo Coclear , Gânglio Espiral da Cóclea , Animais , Cóclea , Nervo Coclear , Camundongos , Neurônios , Estudos Prospectivos , Análise Espaço-Temporal
12.
Elife ; 92020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31975688

RESUMO

Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal's recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.


Every day, we hear sounds that might be alarming, distracting, intriguing or calming ­ or simply just too loud. Our hearing system responds to these acoustic changes by fine-tuning sounds before they enter the brain. For example, if a noise is too loud, the volume can be turned down by dampening the signals nerve fibers in the ear send to the brain. This is thought to reduce the damage loud sounds can cause to the sensory organ inside the ear. A set of nerve cells located at the base of the brain called the lateral olivocochlear (LOC) neurons coordinate this adjustment to different volumes and sounds. When these neurons receive information on external sounds, they signal back to the hearing organs and adjust the activity of auditory nerve fibers that communicate this information to the brain. LOC neurons use a diverse range of molecules to modify the activity of auditory nerve fibers, including the 'feel-good' neurotransmitter dopamine. But it is unclear what role dopamine plays in this auditory feedback loop. To find out, Wu et al. studied the hearing system of mice that had been exposed to different levels of sound. This involved imaging LOC neurons stained with a marker for dopamine and measuring the activity of nerve fibers in the inner ear. The experiments showed that LOC neurons in mice that had recently been exposed to sound were covered in an enzyme that is essential for making dopamine. The louder the sound, the more of this enzyme was present, suggesting that the amount of dopamine released depends on the volume of the sound. LOC neurons release another neurotransmitter called acetylcholine, which stimulates activity in auditory nerve fibers. Wu et al. found that dopamine and acetylcholine are released from the same group of LOC neurons. However, dopamine had the opposite effect to acetylcholine and reduced nerve activity. These findings suggest that by controlling the mixture of neurotransmitters released, LOC neurons are able to fine-tune the activity of auditory nerve fibers in response to acoustic changes. This work provides a new insight into how our hearing system is able to perceive and relay changes in the sound environment. A better understanding of this auditory feedback loop could influence the design of implant devices for people with impaired hearing.


Assuntos
Neurônios Colinérgicos/metabolismo , Nervo Coclear/metabolismo , Dopamina/biossíntese , Neurônios Eferentes/metabolismo , Som , Animais , Células Ciliadas Auditivas Internas/metabolismo , Camundongos , Ratos
13.
Cell Rep ; 25(12): 3451-3464.e3, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566869

RESUMO

A Ca2+ current transient block (ICaTB) by protons occurs at some ribbon-type synapses after exocytosis, but this has not been observed at mammalian hair cells. Here we show that a robust ICaTB occurs at post-hearing mouse and gerbil inner hair cell (IHC) synapses, but not in immature IHC synapses, which contain non-compact active zones, where Ca2+ channels are loosely coupled to the release sites. Unlike ICaTB at other ribbon synapses, ICaTB in mammalian IHCs displays a surprising multi-peak structure that mirrors the EPSCs seen in paired recordings. Desynchronizing vesicular release with intracellular BAPTA or by deleting otoferlin, the Ca2+ sensor for exocytosis, greatly reduces ICaTB, whereas enhancing release synchronization by raising Ca2+ influx or temperature increases ICaTB. This suggests that ICaTB is produced by fast multivesicular proton-release events. We propose that ICaTB may function as a submillisecond feedback mechanism contributing to the auditory nerve's fast spike adaptation during sound stimulation.


Assuntos
Canais de Cálcio/metabolismo , Células Ciliadas Auditivas/metabolismo , Mamíferos/metabolismo , Prótons , Vesículas Sinápticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Nervo Coclear/efeitos dos fármacos , Nervo Coclear/fisiologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Exocitose/efeitos dos fármacos , Gerbillinae , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Nifedipino/farmacologia , Rana catesbeiana , Temperatura
14.
J Comp Neurol ; 526(3): 425-438, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055051

RESUMO

Type II spiral ganglion neurons (SGNs) are small caliber, unmyelinated afferents that extend dendritic arbors hundreds of microns along the cochlear spiral, contacting many outer hair cells (OHCs). Despite these many contacts, type II afferents are insensitive to sound and only weakly depolarized by glutamate release from OHCs. Recent studies suggest that type II afferents may be cochlear nociceptors, and can be excited by ATP released during tissue damage, by analogy to somatic pain-sensing C-fibers. The present work compares the expression patterns among cochlear type II afferents of two genes found in C-fibers: calcitonin-related polypeptide alpha (Calca/Cgrpα), specific to pain-sensing C-fibers, and tyrosine hydroxylase (Th), specific to low-threshold mechanoreceptive C-fibers, which was shown previously to be a selective biomarker of type II versus type I cochlear afferents (Vyas et al., ). Whole-mount cochlear preparations from 3-week- to 2-month-old CGRPα-EGFP (GENSAT) mice showed expression of Cgrpα in a subset of SGNs with type II-like peripheral dendrites extending beneath OHCs. Double labeling with other molecular markers confirmed that the labeled SGNs were neither type I SGNs nor olivocochlear efferents. Cgrpα starts to express in type II SGNs before hearing onset, but the expression level declines in the adult. The expression patterns of Cgrpα and Th formed opposing gradients, with Th being preferentially expressed in apical and Cgrpα in basal type II afferent neurons, indicating heterogeneity among type II afferent neurons. The expression of Th and Cgrpα was not mutually exclusive and co-expression could be observed, most abundantly in the middle cochlear turn.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Receptoras Sensoriais/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Audição/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miosinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
15.
Hear Res ; 365: 36-48, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29913342

RESUMO

Recent animal studies have shown that the synapses between inner hair cells and the dendrites of the spiral ganglion cells they innervate are the elements in the cochlea most vulnerable to excessive noise exposure. Particularly in rodents, several studies have concluded that exposure to high level octave-band noise for 2 h leads to an irreversible loss of around 50% of synaptic ribbons, leaving audiometric hearing thresholds unaltered. Cochlear synaptopathy following noise exposure is hypothesized to degrade the neural encoding of sounds at the subcortical level, which would help explain certain listening-in-noise difficulties reported by some subjects with otherwise 'normal' hearing. In response to this peripheral damage, increased gain of central stages of the auditory system has been observed across several species of mammals, particularly in association with tinnitus. The auditory brainstem response (ABR) wave I amplitude and waves I-V amplitude ratio have been suggested as non-invasive indicators of cochlear synaptopathy and central gain activation respectively, but the evidence for these hearing disorders in humans is inconclusive. In this study, we evaluated the influence of lifetime noise exposure (LNE) on the human ABR and on speech-in-noise intelligibility performance in a large cohort of adults aged 29 to 55. Despite large inter-subject variability, results showed a moderate, but statistically significant, negative correlation between the ABR wave I amplitude and LNE, consistent with cochlear synaptopathy. The results also showed (a) that central gain mechanisms observed in animal studies might also occur in humans, in which higher stages of the auditory pathway appear to compensate for reduced input from the cochlea; (b) that tinnitus was associated with activation of central gain mechanisms; (c) that relevant cognitive and subcortical factors influence speech-in-noise intelligibility, in particular, longer ABR waves I-V interpeak latencies were associated with poorer performance in understanding speech in noise when central gain mechanisms were active; and (d) absence of a significant relationship between LNE and tinnitus, central gain activation or speech-in-noise performance. Although this study supports the possible existence of cochlear synaptopathy in humans, the great degree of variability, the lack of uniformity in central gain activation and the significant involvement of attention in speech-in-noise performance suggests that noise-induced cochlear synaptopathy is, at most, one of several factors that play a role in humans' speech-in-noise performance.


Assuntos
Cóclea/fisiopatologia , Doenças Cocleares/etiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Provocada por Ruído/etiologia , Ruído/efeitos adversos , Mascaramento Perceptivo , Inteligibilidade da Fala , Percepção da Fala , Zumbido/etiologia , Estimulação Acústica , Adulto , Fatores Etários , Audiometria da Fala , Limiar Auditivo , Estudos de Casos e Controles , Doenças Cocleares/diagnóstico , Doenças Cocleares/fisiopatologia , Doenças Cocleares/psicologia , Eletroencefalografia , Feminino , Audição , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Fatores de Tempo , Zumbido/diagnóstico , Zumbido/fisiopatologia , Zumbido/psicologia
16.
Technol Health Care ; 25(2): 221-235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27689564

RESUMO

BACKGROUND: Speech synthesis models have been considered as viable tools for performance evaluation of cochlear stimulation algorithms, due to the difficulties of clinical tests. OBJECTIVE: The present study has developed a tool that can be used before any audio signal reconstruction algorithm, which shows more conformity with the electrophysiological parameters of the patient in evaluation of the cochlear implant stimulation algorithms. METHODS: In this method, excitable nerve fiber characteristics such as stimulation threshold and effective refractory period have been considered in the signal pre-reconstruction process. This algorithm subsumes the user's biological parameters (e.g., the manner of distribution of the remaining intact nerve fibers) as well as the stimulation signal parameters (e.g., stimulation rate, pulse width, amplitude of stimulation, the distance between stimulation electrode and fibers) in the signal pre-reconstruction. RESULTS: Effect of changes in these parameters can be observed by the number of excited fibers, which is directly related to the signal intensity and pitch frequency perceived by the user. The obtained results from simulations are in accordance with previous clinical findings. Also, the ability of the proposed tool can be seen by the correspondence between the results obtained from the proposed model and the amplitude growth functions of the cochlear implant users. CONCLUSIONS: This paper has introduced a tool for signal reconstruction from electrical stimulation so that a more comprehensive criterion for examination of the stimulating algorithms in cochlear implant can be achieved.


Assuntos
Implantes Cocleares , Fenômenos Eletrofisiológicos , Processamento de Sinais Assistido por Computador , Fala , Algoritmos , Humanos
17.
Neuroscience ; 332: 242-57, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27403879

RESUMO

In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.


Assuntos
Vias Auditivas/patologia , Cóclea/patologia , Núcleo Coclear/patologia , Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/patologia , Ruído/efeitos adversos , Animais , Vias Auditivas/metabolismo , Tamanho Celular , Sobrevivência Celular , Cóclea/metabolismo , Núcleo Coclear/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Imuno-Histoquímica , Masculino , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Receptores de AMPA/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa