RESUMO
Proteins are usually studied in well-defined buffer conditions, which differ substantially from those within a host cell. In some cases, the intracellular environment has an impact on the mechanism, which might be missed by in vitro experiments. IR difference spectroscopy previously has been applied to study the light-induced response of photoreceptors and photoenzymes in vitro Here, we established the in-cell IR difference (ICIRD) spectroscopy in the transmission and attenuated total reflection configuration to investigate the light-induced response of soluble proteins in living bacterial cells. ICIRD spectroscopy on the light, oxygen, or voltage (LOV) domains of the blue light receptors aureochrome and phototropin revealed a suppression of the response of specific secondary structure elements, indicating that the intracellular environment affects LOV photoreceptor mechanisms in general. Moreover, in-cell fluorescence spectroscopy disclosed that the intracellular environment slows down the recovery of the light-induced flavin adduct. Segment-resolved ICIRD spectroscopy on basic-region leucine zipper (bZIP)-LOV of aureochrome 1a from the diatom Phaeodactylum tricornutum indicated a signal progression from the LOV sensor to the bZIP effector independent of unfolding of the connecting A'α-helix, an observation that stood in contrast to in vitro results. This deviation was recapitulated in vitro by emulating the intracellular environment through the addition of the crowding agent BSA, but not by sucrose polymers. We conclude that ICIRD spectroscopy is a noninvasive, label-free approach for assessing conformational changes in receptors in living cells at ambient conditions. As demonstrated, these near-native responses may deviate from the mechanisms established under in vitro conditions.
Assuntos
Espectrofotometria Infravermelho/métodos , Chlamydomonas reinhardtii/química , Diatomáceas/química , Luz , Modelos Moleculares , Fototropinas/química , Domínios Proteicos , Estrutura Secundária de ProteínaRESUMO
Allosteric communication is the basis of signaling and information transfer. Collective interactions between amino acid residues, which are spatially distributed in the three dimensional structure of a protein molecule, form the basis of allosteric network. While the construction of residue interaction graphs (RIG) is based on static crystal structures of proteins, it is important to extract information on protein dynamics to understand allostery. Therefore, quantitative analysis of RIG based on the framework of differential network (DN), is immensely helpful in identifying key amino acid residue interactions within such communication pathways. While the simultaneous availability of protein structures from two different states is essential for DN, there are additional challenges. Crystallographic artifacts like nonbiological dimeric arrangements within the crystal lattice automatically influence the construction and eventually the interpretation of RIG. Therefore, experimental validation of predictions from the analyses of RIG is naturally scarce in the literature. Herein, we study the photo sensor domain of the signaling photoreceptor transcription factor, aureochrome1, to understand light-driven signaling. We perform direct experiments to verify the predictions from RIG using the machinery of DN. However, the agreement leaves scope for improvement. We then discuss the notion of quaternary structure alignment to obtain a biologically meaningful dimer. Thence, we reconstruct the RIG and reanalyze the modified structure. Results of these reanalyses render far superior agreement with experiments. Therefore, this notion of addressing crystallographic biases provides a fresh yet general approach for reconciliation of theory and experiments. It is applicable beyond the present case to all signaling proteins in general.
Assuntos
Proteínas de Algas/química , Proteínas de Algas/metabolismo , Transdução de Sinal Luminoso , Luz , Oxigênio/química , Células Fotorreceptoras/metabolismo , Estramenópilas/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre ProteínasRESUMO
Blue light (BL) plays an important role in regulation of the growth and development of aquatic plants and land plants. Aureochrome (AUREO), the recent BL photoreceptor identified in photosynthetic stramenopile algae, is involved in the photomorphogenesis and early development of Saccharina japonica porophytes (kelp). However the factors that interact with the SjAUREO under BL conditions specifically are not clear. Here in our study, three high quality cDNA libraries with CFU over 5 × 106 and a recombination rate of 100% were constructed respectively through white light (WL), BL and darkness (DK) treatments to the juvenile sporophytes. Based on the constructed cDNA libraries, the interactors of SjAUREO were screened and analyzed. There are eighty-four genes encoding the sixteen predicted proteins from the BL cDNA library, sixty-eight genes encoding eighteen predicted proteins from the DK cDNA library, and seventy-four genes encoding nineteen proteins from the WL cDNA library. All the predicted proteins are presumed to interact with SjAUREO when co-expressed with SjAUREO seperately. The 40S ribosomal protein S6 (RPS6), which only exists in the BL treated cDNA library except for two other libraries, and which is essential for cell proliferation and is involved in cell cycle progression, was selected for detailed analysis. We showed that its transcription was up-regulated by BL, and was highly transcribed in the basal blade (meristem region) of juvenile sporophytes but less in the distal part. Taken together, our results indicated that RPS6 was highly involved in BL-mediated kelp cellular division and photomorphogenesis by interacting with SjAUREO.
Assuntos
Laminaria/metabolismo , Laminaria/efeitos da radiação , Luz , Proteína S6 Ribossômica/metabolismo , Proteína S6 Ribossômica/efeitos da radiação , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/efeitos da radiação , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Biblioteca Gênica , Genes de Plantas/genética , Laminaria/genética , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efeitos da radiação , Fotossíntese , Proteínas de Plantas/genética , Proteínas Ribossômicas/genética , Regulação para Cima/efeitos da radiaçãoRESUMO
Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.
Assuntos
Receptores ErbB/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática , Receptores ErbB/genética , Células HEK293 , Humanos , Luz , Fosforilação , Engenharia de Proteínas/métodos , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Recombinantes/genética , Transdução de SinaisRESUMO
During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles.
Assuntos
Transdução de Sinal Luminoso , Estramenópilas/fisiologia , Fatores de Transcrição/genética , Evolução Biológica , Luz , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fotossíntese/efeitos da radiação , Filogenia , Estramenópilas/citologia , Estramenópilas/genética , Estramenópilas/efeitos da radiação , Simbiose , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
Aureochrome (AUREO) is a kind of blue light photoreceptor with both LOV and bZIP structural domains, identified only in Stramenopiles. It functions as a transcription factor that responds to blue light, playing diverse roles in the growth, development, and reproduction of Stramenopiles. Most of its functions are currently unknown, especially in the economically important alga S. japonica farmed on a large scale. This study provided a comprehensive analysis of the characteristics of AUREO gene families in seven algae, focusing on the AUREOs of S. japonica. AUREO genes were strictly identified from seven algal genomes. Then AUREO phylogenetic tree was constructed from 44 conserved AUREO genes collected. These AUREO genes were divided into five groups based on phylogenetic relationships. A total of 28 genes unnamed previously were named according to the phylogenetic tree. A large number of different cis-acting elements, especially bZIP transcription factors, were discovered upstream of AUREO genes in brown algae. Different intron/exon structural patterns were identified among all AUREOs. Transcriptomic data indicated that the expression of Sj AUREO varied significantly during the different development stages of S. japonica gametophytes. Periodic rhythms of light induction experiments indicate that Sj AUREO existed in a light-dependent circadian expression pattern, differing from other similar studies in the past. This may indicate that blue light affects gametophyte development through AUREO as a light signal receptor. This study systematically identified and analyzed the AUREO gene family in seven representative brown algae, which lay a good foundation for further study and understanding of AUERO functions in agal growth and development.
RESUMO
Aureochrome, a blue-light receptor specifically found in photosynthetic stramenopiles, plays an important role in algal growth and development. It holds a reversed effector-sensor topology for the reception of blue light, acting as a candidate of optogenetic tool in transcriptional regulation. However, the inner regulatory mechanism of aureochrome is still unclear. In this study, we explored the potential regulatory relationship between microRNAs (miRNAs) and mRNAs by small RNA, transcriptome and degradome sequencing in Saccharina japonica. Through screening miRNA-mRNA interaction networks at the whole-genome level, we found that 18 miRNAs perfectly paired with aureochrome. Among these screened miRNAs, miR8181 was negatively correlated with aureochrome5 with high credibility, exhibiting tissue-specific expression in sporophyte of S. japonica. Degradome analysis further revealed the exact cleavage site of miR8181 on aureochrome5, confirming their targeting relationship. For the 54 target genes of miR8181, nine genes that exhibited similar expression to that of aureochrome5 competed for the same binding site, thus establishing a competing endogenous RNA network. Functional enrichment of the target genes revealed that miR8181 was involved in the regulation of cell differentiation and development in S. japonica. Moreover, overexpression of miR8181 resulted in significant decreases in the cell growth rates of Phaeodactylum tricornutum, suggesting negative roles of miR8181 in regulating cell growth. Our study revealed that miR8181, the targeting miRNA of aureochrome5, played negative roles in cell growth and development.
Assuntos
MicroRNAs/genética , Phaeophyceae/fisiologia , RNA de Algas/genética , RNA Mensageiro/genética , Transcriptoma , Diferenciação Celular/genética , MicroRNAs/metabolismo , Phaeophyceae/genética , RNA de Algas/metabolismo , RNA Mensageiro/metabolismoRESUMO
Aquaculture industries are under threat from noxious red tides, but harm can be mitigated by precautions such as early harvesting and restricting fish feeding to just before the outbreak of a red tide. Therefore, accurate techniques for forecasting red-tide outbreaks are strongly needed. Omics analyses have the potential to expand our understanding of the eco-physiology of these organisms at the molecular level, and to facilitate identification of molecular markers for forecasting their population dynamics and occurrence of damages to fisheries. Red tides of marine raphidophytes, especially Chattonella species, often extensively harm aquaculture industries in regions with a temperate climate around the world. A red tide of Chattonella tends to develop just after an input of nutrients along the coast. Chattonella displays diurnal vertical migration regulated by a weak blue light, so it photosynthesizes in the surface layer during the daytime and takes up nutrients in the bottom layer during the nighttime. Superoxide produced by Chattonella cells is a strong candidate for the cause of its toxicity to bacteria and fishes. Here we conducted mRNA-seq of Chattonella antiqua to identify genes with functions closely related to the dynamics of the noxious red tide, such as photosynthesis, photoreception, nutrient uptake, and superoxide production. The genes related to photosynthetic pigment biosynthesis and nutrient uptake had high similarity with those of model organisms of plants and algae and other red-tide microalgae. We identified orthologous genes of photoreceptors such as aureochrome (newly five genes), the cryptochrome/photolyase (CRY/PHR) family (6-4PHR, plant CRY or cyclobutane pyrimidine dimer [CPD] Class III, CPD Class II, and CRY-DASH), and phytochrome (four genes), which regulate various physiological processes such as flagellar motion and cell cycle in model organisms. Six orthologous genes of NADPH oxidase, which produces superoxide on the cell membrane, were found and divided into two types: one with 5-6 transmembrane domains and another with 11 transmembrane domains. The present study should open the way for analyzing the eco-physiological features of marine raphidophytes at the molecular level.
RESUMO
The coenocytic tip-growing alga Vaucheria exhibits positive and negative phototropism, apical expansion, polarotropism, and branch induction from the illuminated region of the cell, all of which are caused by blue light. The bending response of Vaucheria is a blue light-mediated growth response. Differently from diffuse-growing cells or organs, the apical hemispherical dome of the Vaucheria cell is the site of not only maximum growth activity but also the site of blue light perception. Thence the phototropic response is initiated by the bulging mechanism: that is, a quick shift of the growth center to the adjacent subapical flank region. Since tip growth is driven by localized exocytosis, both phototropic bending and branch induction are considered to be closely related blue light-responses. Here I describe first how to prepare a highly useful culture medium for most freshwater algae, to establish unialgal and axenic culture of Vaucheria, and then describe several simple illumination systems using ordinary and/or inverted microscopes for the measurements of tip growth and for analyses of phototropism, polarotropism, and blue light-induced branching. Brief information is also included concerning the nature and function of aureochrome, the newly discovered, ochrophyte-specific blue light receptor. Aureochrome mediates blue light-induced branching, but its role in the phototropic response is still not elucidated.
Assuntos
Luz , Fototropismo/fisiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiaçãoRESUMO
Aureochrome1 is a blue-light-receptor protein identified in a stramenopile alga, Vaucheria frigida. Photozipper (PZ) is an N-terminally truncated, monomeric, V. frigida aureochrome1 fragment containing a basic leucine zipper (bZIP) domain and a light-oxygen-voltage (LOV)-sensing domain. PZ dimerizes upon photoexcitation and consequently increases its affinity for the target sequence. In the present study, to understand the equilibria among DNA complexes of PZ, DNA binding by PZ and mutational variants was quantitatively investigated by electrophoretic-mobility-shift assay and fluorescence-correlation spectroscopy in the dark and light states. DNA binding by PZ was sequence-specific and light-dependent. The half-maximal effective concentration of PZ for binding to the target DNA sequence was ~40 nM in the light, which was >10-fold less than the value in the dark. By contrast, the dimeric PZ-S2C variant (with intermolecular disulfide bonds) had higher affinity for the target sequence, with dissociation constants of ~4 nM, irrespective of the light conditions. Substitutions of Glu159 and Lys164 in the leucine zipper region decreased the affinity of PZ for the target sequence, especially in the light, suggesting that these residues form inter-helical salt bridges between leucine zipper regions, stabilizing the dimer-DNA complex. Our quantitative analyses of the equilibria in PZ-DNA-complex formation suggest that the blue-light-induced dimerization of LOV domains and coiled-coil formation by leucine zipper regions are the primary determinants of the affinity of PZ for the target sequence.
RESUMO
Light is important for algae, as it warrants metabolic independence via photosynthesis. In addition to the absorption of light by the photosystems, algae possess a variety of specific photoreceptors that allow the quantification of the light fluxes as well as the assessment of light qualities. About a decade ago, aureochromes have been described in the xanthophyte alga Vaucheria frigida. These proteins represent a new type of blue light photoreceptor as they possess both a light-oxygen-voltage (LOV) domain for light reception as well as a basic region leucine zipper (bZIP) domain for DNA binding, indicating that they represent light-driven transcription factors. Aureochromes so far have been detected only in a single group of algae, photosynthetic stramenopiles, but not in any other prokaryotic or eukaryotic organisms. Recent biophysical work on aureochromes in the absence and the presence of DNA revealed the mechanism of allosteric communication between the sensor and effector domains despite their unusual inversed arrangement. Different molecular models have been proposed to describe the effect of light on DNA binding. Functional characterization of mutants of the diatom Phaeodactylum tricornutum, in which the aureochrome genes have been silenced or deleted, indicate that different aureochromes may have different functions, being involved in central processes like light acclimation and regulation of the cell cycle.
Assuntos
Fotorreceptores de Plantas/fisiologia , Estramenópilas/fisiologia , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Luz , Fotorreceptores de Plantas/classificação , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fototropinas/genética , Fototropinas/metabolismo , Fototropinas/fisiologia , Filogenia , Estramenópilas/genética , Estramenópilas/metabolismoRESUMO
Aureochromes are blue light receptors specifically found in photosynthetic Stramenopiles (algae). Four different Aureochromes have been identified in the marine diatom Phaeodactylum tricornutum (PtAUREO 1a, 1b, 1c, and 2). Since blue light is necessary for high light acclimation in diatoms, it has been hypothesized that Aureochromes might play an important role in the light acclimation capacity of diatoms. This hypothesis was supported by an RNAi knockdown line of PtAUREO1a, which showed a phenotype different from wild type cells when grown in either blue or red light. Here, we show for the first time the phenotype and the photoacclimation reaction of TALEN-mediated knockout mutants of PtAUREO1a and PtAUREO1b, clearly proving the necessity of Aureochromes for light acclimation under blue light. However, both mutants do also show specific differences in their respective phenotypes. Hence, PtAUREO1a and 1b are not functionally redundant in photoacclimation to blue light, and their specific contribution needs to be clarified further.
Assuntos
Diatomáceas/metabolismo , Luz , Fotorreceptores de Plantas/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Diatomáceas/genética , Técnicas de Inativação de Genes , Fenótipo , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/fisiologia , FotossínteseRESUMO
Light-oxygen-voltage (LOV) domains absorb blue light for mediating various biological responses in all three domains of life. Aureochromes from stramenopile algae represent a subfamily of photoreceptors that differs by its inversed topology with a C-terminal LOV sensor and an N-terminal effector (basic region leucine zipper, bZIP) domain. We crystallized the LOV domain including its flanking helices, A'α and Jα, of aureochrome 1a from Phaeodactylum tricornutum in the dark state and solved the structure at 2.8 Å resolution. Both flanking helices contribute to the interface of the native-like dimer. Small-angle X-ray scattering shows light-induced conformational changes limited to the dimeric envelope as well as increased flexibility in the lit state for the flanking helices. These rearrangements are considered to be crucial for the formation of the light-activated dimer. Finally, the LOV domain of the class 2 aureochrome PtAUREO2 was shown to lack a chromophore because of steric hindrance caused by M301.