Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(1): 102-113.e14, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28648662

RESUMO

Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.


Assuntos
Arabidopsis/fisiologia , Raízes de Plantas/citologia , Células-Tronco/citologia , Divisão Celular , Temperatura Baixa , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Nicho de Células-Tronco , Estresse Fisiológico
2.
New Phytol ; 213(3): 1194-1207, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27659765

RESUMO

Here, we investigated the role of auxin distribution in controlling Arabidopsis thaliana late stamen development. We analysed auxin distribution in anthers by monitoring DR5 activity: at different flower developmental stages; inhibiting auxin transport; in the rpk2-3 and ems1 mutants devoid of middle layer (ML) or tapetum, respectively; and in the auxin biosynthesis yuc6 and perception afb1-3 mutants. We ran a phenotypic, DR5::GUS and gene expression analysis of yuc6rpk2 and afb1rpk2 double mutants, and of 1-N-naphthylphthalamic acid (NPA)-treated flower buds. We show that an auxin maximum, caused by transport from the tapetum, is established in the ML at the inception of late stamen development. rpk2-3 mutant stamens lacking the ML have an altered auxin distribution with excessive accumulation in adjacent tissues, causing non-functional pollen grains, indehiscent anthers and reduced filament length; the expression of genes controlling stamen development is also altered in rpk2-3 as well as in NPA-treated flower buds. By decreasing auxin biosynthesis or perception in the rpk2-3 background, we eliminated these developmental and gene expression anomalies. We propose that the auxin maximum in the ML plays a key role in late stamen development, as it ensures correct and coordinated pollen maturation, anther dehiscence and filament elongation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Pólen/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genes Reporter , Modelos Biológicos , Especificidade de Órgãos/genética , Pólen/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Plant ; 7(6): 977-988, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24711289

RESUMO

Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branch site of the primary root, and FC establishment is essential for lateral root formation. FCs are known to be specified from xylem pole pericycle cells, but the molecular genetic mechanisms underlying FC establishment are unclear. Here, we report that, in Arabidopsis thaliana, a PRC2 (for Polycomb repressive complex 2) histone H3 lysine-27 (H3K27) methyltransferase complex, functions to inhibit FC establishment during LR initiation. We found that functional loss of the PRC2 subunits EMF2 (for EMBRYONIC FLOWER 2) or CLF (for CURLY LEAF) leads to a great increase in the number of LRs formed in the primary root. The CLF H3K27 methyltransferase binds to chromatin of the auxin efflux carrier gene PIN FORMED 1 (PIN1), deposits the repressive mark H3K27me3 to repress its expression, and functions to down-regulate auxin maxima in root tissues and inhibit FC establishment. Our findings collectively suggest that EMF2-CLF PRC2 acts to down-regulate root auxin maxima and show that this complex represses LR formation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Raízes de Plantas/genética
4.
Mol Plant ; 7(2): 277-89, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23939433

RESUMO

In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum that emerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxin response machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell maintenance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thus provides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is balanced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biology, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediated auxin production to IAA17-dependent repression of auxin responses. This WOX5-IAA17 feedback circuit further assures the maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stem cell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5-IAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSC differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nicho de Células-Tronco , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Proteínas Nucleares/genética , Desenvolvimento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa