Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EFSA J ; 22(4): e8755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638555

RESUMO

Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.

2.
EFSA J ; 21(10): e08271, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822713

RESUMO

Several vaccines have been developed against highly pathogenic avian influenza (HPAI), mostly inactivated whole-virus vaccines for chickens. In the EU, one vaccine is authorised in chickens but is not fully efficacious to stop transmission, highlighting the need for vaccines tailored to diverse poultry species and production types. Off-label use of vaccines is possible, but effectiveness varies. Vaccines are usually injectable, a time-consuming process. Mass-application vaccines outside hatcheries remain rare. First vaccination varies from in-ovo to 6 weeks of age. Data about immunity onset and duration in the target species are often unavailable, despite being key for effective planning. Minimising antigenic distance between vaccines and field strains is essential, requiring rapid updates of vaccines to match circulating strains. Generating harmonised vaccine efficacy data showing vaccine ability to reduce transmission is crucial and this ability should be also assessed in field trials. Planning vaccination requires selecting the most adequate vaccine type and vaccination scheme. Emergency protective vaccination is limited to vaccines that are not restricted by species, age or pre-existing vector-immunity, while preventive vaccination should prioritise achieving the highest protection, especially for the most susceptible species in high-risk transmission areas. Model simulations in France, Italy and The Netherlands revealed that (i) duck and turkey farms are more infectious than chickens, (ii) depopulating infected farms only showed limitations in controlling disease spread, while 1-km ring-culling performed better than or similar to emergency preventive ring-vaccination scenarios, although with the highest number of depopulated farms, (iii) preventive vaccination of the most susceptible species in high-risk transmission areas was the best option to minimise the outbreaks' number and duration, (iv) during outbreaks in such areas, emergency protective vaccination in a 3-km radius was more effective than 1- and 10-km radius. Vaccine efficacy should be monitored and complement other surveillance and preventive efforts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa