Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(31)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38811166

RESUMO

Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.


Assuntos
Axônios , Peptídeo 1 Semelhante ao Glucagon , Neurônios , Rombencéfalo , Animais , Masculino , Feminino , Ratos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Neurônios/metabolismo , Axônios/metabolismo , Rombencéfalo/metabolismo , Vias Neurais/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Hipotálamo/citologia , Prosencéfalo/metabolismo , Sistema Límbico/metabolismo , Núcleo Solitário/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
2.
J Neurophysiol ; 125(4): 1482-1500, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729831

RESUMO

Neurons in the external globus pallidus (GPe) are autonomous pacemakers, but their spontaneous firing is continually perturbed by synaptic input. Because GPe neurons fire rhythmically in slices, spontaneous inhibitory synaptic currents (IPSCs) should be evident there. We identified periodic series of IPSCs in slices, each corresponding to unitary synaptic currents from one presynaptic cell. Optogenetic stimulation of the striatal indirect pathway axons caused a pause and temporal resetting of the periodic input, confirming that it arose from local neurons subject to striatal inhibition. We determined the firing statistics of the presynaptic neurons from the unitary IPSC statistics and estimated their frequencies, peak amplitudes, and reliabilities. To determine what types of GPe neurons received the spontaneous inhibition, we recorded from genetically labeled parvalbumin (PV) and Npas1-expressing neurons. Both cell types received periodic spontaneous IPSCs with similar frequencies. Optogenetic inhibition of PV neurons reduced the spontaneous IPSC rate in almost all neurons with active unitary inputs, whereas inhibition of Npas1 neurons rarely affected the spontaneous IPSC rate in any neurons. These results suggest that PV neurons provided most of the active unitary inputs to both cell types. Optogenetic pulse stimulation of PV neurons at light levels that can activate cut axons yielded an estimate of connectivity in the fully connected network. The local network is a powerful source of inhibition to both PV and Npas1 neurons, which contributes to irregular firing and may influence the responses to external synaptic inputs.NEW & NOTEWORTHY Brain circuits are often quiet in slices. In the globus pallidus, network activity continues because of the neurons' rhythmic autonomous firing. In this study, synaptic currents generated by the network barrage were measured in single neurons. Unitary synaptic currents arising from single presynaptic neurons were identified by their unique periodicity. Periodic synaptic currents were large and reliable, even at the cell's natural firing rates, but arose from a small number of other globus pallidus neurons.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Globo Pálido/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Sinapses/fisiologia
3.
BMC Neurosci ; 18(1): 25, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178946

RESUMO

BACKGROUND: The role of the piriform cortex (PC) in olfactory information processing remains largely unknown. The anterior part of the piriform cortex (APC) has been the focus of cortical-level studies of olfactory coding, and associative processes have attracted considerable attention as an important part in odor discrimination and olfactory information processing. Associational connections of pyramidal cells in the guinea pig APC were studied by direct visualization of axons stained and quantitatively analyzed by intracellular biocytin injection in vivo. RESULTS: The observations illustrated that axon collaterals of the individual cells were widely and spatially distributed within the PC, and sometimes also showed a long associational projection to the olfactory bulb (OB). The data showed that long associational axons were both rostrally and caudally directed throughout the PC, and the intrinsic associational fibers of pyramidal cells in the APC are omnidirectional connections in the PC. Within the PC, associational axons typically followed rather linear trajectories and irregular bouton distributions. Quantitative data of the axon collaterals of two pyramidal cells in the APC showed that the average length of axonal collaterals was 101 mm, out of which 79 mm (78% of total length) were distributed in the PC. The average number of boutons was 8926 and 7101, respectively, with 79% of the total number of boutons being distributed in the PC. The percentage of the total area of the APC and the posterior piriform cortex occupied by the average distribution region of the axon collaterals of two superficial pyramidal (SP) cells was about 18 and 5%, respectively. CONCLUSION: Our results demonstrate that omnidirectional connection of pyramidal cells in the APC provides a substrate for recurrent processes. These findings indicate that the axon collaterals of SP cells in the PC could make synaptic contacts with all granule cells in the OB. This study provides the morphological evidence for understanding the mechanisms of information processing and associative memory in the APC.


Assuntos
Axônios , Córtex Piriforme/citologia , Células Piramidais/citologia , Animais , Tamanho Celular , Feminino , Cobaias , Lisina/análogos & derivados , Masculino , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Fotomicrografia
4.
Proc Natl Acad Sci U S A ; 111(49): 17636-41, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25413364

RESUMO

Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection.


Assuntos
Gânglios da Base/metabolismo , Guanilato Ciclase/química , Neurônios/metabolismo , Óxido Nítrico/química , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/química , Animais , Axônios/metabolismo , AMP Cíclico/metabolismo , Dopamina/metabolismo , Eletrofisiologia , Retroalimentação Fisiológica , Feminino , Proteínas de Fluorescência Verde/metabolismo , Levodopa/química , Masculino , Camundongos , Plasticidade Neuronal , Oxidopamina/química , Transdução de Sinais , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
5.
J Neurophysiol ; 115(6): 2814-29, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26961101

RESUMO

Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically. The sIPSC trains contained a mixture of periodic and aperiodic events. Autocorrelation analysis of sIPSC trains showed that a majority of cells had one to four active unitary inputs. The properties of the unitary IPSCs (uIPSCs) were analyzed for cells with one unitary input, using a model of periodic presynaptic firing and stochastic synaptic transmission. The inferred presynaptic firing rates and coefficient of variation of interspike intervals (ISIs) corresponded well with direct measurements of spiking in SNr neurons. Methods were developed to estimate the success probability, amplitude distributions, and kinetics of the uIPSCs, while removing the contribution from aperiodic sIPSCs. The sIPSC amplitudes were not increased upon release from halorhodopsin silencing, suggesting that most synapses were not depressed at the spontaneous firing rate. Gramicidin perforated-patch recordings indicated that the average reversal potential of spontaneous inhibitory postsynaptic potentials was -64 mV. Because of the change in driving force across the ISI, the unitary inputs are predicted to have a larger postsynaptic impact when they arrive late in the ISI. Simulations of network activity suggest that this very sparse inhibitory coupling may act to desynchronize the activity of SNr neurons while having only a small effect on firing rate.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/fisiologia , Parte Reticular da Substância Negra/fisiologia , Sinapses/fisiologia , Animais , Feminino , Cinética , Masculino , Modelos Neurológicos , Optogenética , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
6.
Res Sq ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798372

RESUMO

In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess "bridging" collaterals within the globus pallidus (GPe), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches to dissect the roles of bridging collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of pallidostriatal Npas1 neurons. We propose a model by which dSPN GPe collaterals ("striatopallidal Go pathway") act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 signals going back to the striatum.

7.
Exp Neurol ; 358: 114227, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108714

RESUMO

Specificity in regeneration after peripheral nerve injuries is a major determinant of functional recovery. Unfortunately, regenerating motor and sensory axons rarely find their original pathways to reinnervate appropriate target organs. Although a preference of motor axons to regenerate towards the muscle has been described, little is known about the specificity of the heterogeneous sensory populations. Here, we propose the comparative study of regeneration in different neuron subtypes. Using female and male reporter mice, we assessed the regenerative preference of motoneurons (ChAT-Cre/Ai9), proprioceptors (PV-Cre/Ai9), and cutaneous mechanoreceptors (Npy2r-Cre/Ai9). The femoral nerve of these animals was transected above the bifurcation and repaired with fibrin glue. Regeneration was assessed by applying retrograde tracers in the distal branches of the nerve 1 or 8 weeks after the lesion and counting the retrotraced somas and the axons in the branches. We found that cutaneous mechanoreceptors regenerated faster than other populations, followed by motoneurons and, lastly, proprioceptors. All neuron types had an early preference to regenerate into the cutaneous branch whereas, at long term, all neurons regenerated more through their original branch. Finally, we found that myelinated neurons extend more regenerative sprouts in the cutaneous than in the muscle branch of the femoral nerve and, particularly, that motoneurons have more collaterals than proprioceptors. Our findings reveal novel differences in regeneration dynamics and specificity, which indicate distinct regenerative mechanisms between neuron subtypes that can be potentially modulated to improve functional recovery after nerve injury.


Assuntos
Adesivo Tecidual de Fibrina , Regeneração Nervosa , Animais , Axônios/fisiologia , Feminino , Nervo Femoral/fisiologia , Masculino , Camundongos , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais
8.
Front Neuroanat ; 13: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833889

RESUMO

The metallic impregnation invented by Camillo Golgi in 1873 has allowed the visualization of individual neurons in their entirety, leading to a breakthrough in the knowledge on the structure of the nervous system. Professor of Histology and of General Pathology, Golgi worked for decades at the University of Pavia, leading a very active laboratory. Unfortunately, most of Golgi's histological preparations are lost. The present contribution provides an account of the original slides on the nervous system from Golgi's laboratory available nowadays at the Golgi Museum and Historical Museum of the University of Pavia. Knowledge on the organization of the nervous tissue at the time of Golgi's observations is recalled. Notes on the equipment of Golgi's laboratory and the methodology Golgi used for his preparations are presented. Images of neurons from his slides (mostly from hippocampus, neocortex and cerebellum) are here shown for the first time together with some of Golgi's drawings. The sections are stained with the Golgi impregnation and Cajal stain. Golgi-impregnated sections are very thick (some more than 150 µm) and require continuous focusing during the microscopic observation. Heterogeneity of neuronal size and shape, free endings of distal dendritic arborizations, axonal branching stand out at the microscopic observation of Golgi-impregnated sections and in Golgi's drawings, and were novel findings at his time. Golgi also pointed out that the axon only originates from cell bodies, representing a constant and distinctive feature of nerve cells which distinguishes them from glia, and subserving transmission at a distance. Dendritic spines can be seen in some cortical neurons, although Golgi, possibly worried about artifacts, did not identify them. The puzzling intricacy of fully impregnated nervous tissue components offered to the first microscopic observations still elicit nowadays the emotion Golgi must have felt looking at his slides.

9.
J Comp Neurol ; 526(10): 1673-1689, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29577283

RESUMO

Singing behavior in the adult male zebra finch is dependent upon the activity of a cortical region known as HVC (proper name). The vast majority of HVC projection neurons send primary axons to either the downstream premotor nucleus RA (robust nucleus of the arcopallium, or primary motor cortex) or Area X (basal ganglia), which play important roles in song production or song learning, respectively. In addition to these long-range outputs, HVC neurons also send local axon collaterals throughout that nucleus. Despite their implications for a range of circuit models, these local processes have never been completely reconstructed. Here, we use in vivo single-neuron Neurobiotin fills to examine 40 projection neurons across 31 birds with somatic positions distributed across HVC. We show that HVC(RA) and HVC(X) neurons have categorically distinct dendritic fields. Additionally, these cell classes send axon collaterals that are either restricted to a small portion of HVC ("local neurons") or broadly distributed throughout the entire nucleus ("broadcast neurons"). Overall, these processes within HVC offer a structural basis for significant local processing underlying behaviorally relevant population activity.


Assuntos
Tentilhões/fisiologia , Centro Vocal Superior/anatomia & histologia , Centro Vocal Superior/citologia , Interneurônios/fisiologia , Animais , Axônios/fisiologia , Dendritos/fisiologia , Processamento de Imagem Assistida por Computador , Masculino , Córtex Motor/citologia , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Vias Neurais/citologia , Terminações Pré-Sinápticas/fisiologia , Vocalização Animal
10.
J Comp Neurol ; 526(2): 275-284, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971478

RESUMO

The neuronal population of the subthalamic nucleus (STN) has the ability to prolong incoming cortical excitation. This could result from intra-STN feedback excitation. The combination of inducible genetic fate mapping techniques with in vitro targeted patch-clamp recordings, allowed identifying a new type of STN neurons that possess a highly collateralized intrinsic axon. The time window of birth dates was found to be narrow (E10.5-E14.5) with very few STN neurons born at E10.5 or E14.5. The fate mapped E11.5-12.5 STN neuronal population included 20% of neurons with profuse axonal branching inside the nucleus and a dendritic arbor that differed from that of STN neurons without local axon collaterals. They had intrinsic electrophysiological properties and in particular, the ability to generate plateau potentials, similar to that of STN neurons without local axon collaterals and more generally to that of classically described STN neurons. This suggests that a subpopulation of STN neurons forms a local glutamatergic network, which together with plateau potentials, allow amplification of hyperdirect cortical inputs and synchronization of the STN neuronal population.


Assuntos
Axônios/fisiologia , Neurônios/citologia , Núcleo Subtalâmico/citologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Embrião de Mamíferos , Feminino , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Núcleo Subtalâmico/embriologia , Núcleo Subtalâmico/crescimento & desenvolvimento
11.
Front Cell Neurosci ; 11: 45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289377

RESUMO

In cortical pyramidal neurons the presynaptic terminals controlling transmitter release are located along unmyelinated axon collaterals, far from the original action potential (AP) initiation site, the axon initial segment (AIS). Once initiated, APs will need to reliably propagate over long distances and regions of geometrical inhomogeneity like branch points (BPs) to rapidly depolarize the presynaptic terminals and confer temporally precise synaptic transmission. While axon pathologies such as demyelinating diseases are well established to impede the fidelity of AP propagation along internodes, to which extent myelin loss affects propagation along BPs and axon collaterals is not well understood. Here, using the cuprizone demyelination model, we performed optical voltage-sensitive dye (VSD) imaging from control and demyelinated layer 5 pyramidal neuron axons. In the main axon, we find that myelin loss switches the modality of AP propagation from rapid saltation towards a slow continuous wave. The duration of single AP waveforms at BPs or nodes was, however, only slightly briefer. In contrast, by using two-photon microscopy-guided loose-seal patch recordings from axon collaterals we revealed a presynaptic AP broadening in combination with a reduced velocity and frequency-dependent failure. Finally, internodal myelin loss was also associated with de novo sprouting of axon collaterals starting from the primary (demyelinated) axon. Thus, the loss of oligodendrocytes and myelin sheaths bears functional consequences beyond the main axon, impeding the temporal fidelity of presynaptic APs and affecting the functional and structural organization of synaptic connectivity within the neocortex.

12.
Front Syst Neurosci ; 16: 910845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720440
13.
Front Neuroanat ; 9: 130, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500509

RESUMO

Conventional neuroanatomical, immunohistochemical techniques, and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP)-containing magnocellular neurons (magnocells) in the hypothalamic paraventricular nucleus (PVN). Here, we used in vivo extracellular recording, juxtacellular labeling, post-hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus (SCN), lateral habenula (LHb), medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an "occasional" phenomenon as previously thought.

14.
Exp Neurol ; 247: 241-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684634

RESUMO

Restoring voluntary fine motor control of the arm and hand is one of the main goals following cervical spinal cord injury (SCI). Although the functional improvement achievable with rehabilitative training in rat models is frequently accompanied by corticospinal tract (CST) plasticity, CST rewiring alone seems insufficient to account for the observed recovery. Recent investigations in animal models of SCI have suggested that the reticulospinal tract (RtST) might contribute to mediating improved motor performance of the forelimb. Here we investigate whether the spared RtST can compensate for the loss of CST input and whether RtST projections rearrange in response to cervical SCI. Animals underwent unilateral ablation of the dorsal CST and rubrospinal tract at spinal level C4, while the ventral RtST projections were spared. At the end of the six-week recovery period, injured animals had made significant improvements in single pellet reaching. This was not accompanied by increased sprouting of the injured CST above the injury compared to uninjured control animals. Injury-induced changes in RtST fiber density within the gray matter, as well as in the number of RtST collaterals entering the gray matter or crossing the cord midline were minor above the injury. However, all analyses directly below the injured spinal level consistently point to a significant decrease of RtST projections. The mechanism and the functional relevance behind this new finding warrant further study. Our results also suggest that mechanisms other than anatomical plasticity, such as plastic changes on a cellular level, might be responsible for the observed spontaneous recovery.


Assuntos
Plasticidade Neuronal/fisiologia , Tratos Piramidais/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Análise de Variância , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Vértebras Cervicais , Modelos Animais de Doenças , Feminino , Membro Anterior/fisiopatologia , Lateralidade Funcional , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regeneração Nervosa , Plasticidade Neuronal/efeitos dos fármacos , Neurotrofina 3/biossíntese , Neurotrofina 3/uso terapêutico , Desempenho Psicomotor , Tratos Piramidais/patologia , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Fatores de Tempo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa