Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Mol Cell ; 81(7): 1499-1514.e6, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621478

RESUMO

Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%-99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética
2.
Genome Res ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358016

RESUMO

DNA modifications in bacteria present diverse types and distributions, playing crucial functional roles. Current methods for detecting bacterial DNA modifications via nanopore sequencing typically involve comparing raw current signals to a methylation-free control. In this study, we found that bacterial DNA modification induces errors in nanopore reads. And these errors are found only in one strand but not the other, showing a strand-specific bias. Leveraging this discovery, we developed Hammerhead, a pioneering pipeline designed for de novo methylation discovery that circumvents the necessity of raw signal inference and a methylation-free control. The majority (14 out of 16) of the identified motifs can be validated by raw signal comparison methods or by identifying corresponding methyltransferases in bacteria. Additionally, we included a novel polishing strategy employing duplex reads to correct modification-induced errors in bacterial genome assemblies, achieving a reduction of over 85% in such errors. In summary, Hammerhead enables users to effectively locate bacterial DNA methylation sites from nanopore FASTQ/FASTA reads, thus holds promise as a routine pipeline for a wide range of nanopore sequencing applications, such as genome assembly, metagenomic binning, decontaminating eukaryotic genome assembly, and functional analysis for DNA modifications.

3.
Cancer Sci ; 115(8): 2578-2587, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38682309

RESUMO

Bacterial flora are present in various parts of the human body, including the intestine, and are thought to be involved in the etiology of various diseases such as multiple sclerosis, intestinal diseases, cancer, and uterine diseases. In recent years, the presence of bacterial 16S rRNA genes has been revealed in blood, which was previously thought to be a sterile environment, and characteristic blood microbiomes have been detected in various diseases. However, the mechanism and the origin of the bacterial information are unknown. In this study, we performed 16S rRNA metagenomic analysis of bacterial DNA in serum extracellular vesicles from five healthy donors and seven patients with renal cell carcinoma and detected Cutibacterium acnes DNA as a characteristic bacterial DNA in the serum extracellular vesicles of patients with renal cell carcinoma. In addition, C. acnes DNA was significantly reduced in postoperative serum extracellular vesicles from patients with renal cell carcinoma compared with that in preoperative serum extracellular vesicles from these patients and was also detected in tumor tissue and extracellular vesicles from tumor tissue-associated microbiota, suggesting an association between C. acnes extracellular vesicles and renal cell carcinoma. C. acnes extracellular vesicles were taken up by renal carcinoma cells to enhance their proliferative potential. C. acnes extracellular vesicles also exhibited tumor-promoting activity in a mouse model of renal cancer allografts with enhanced angiogenesis. These results suggest that extracellular vesicles released by C. acnes localized in renal cell carcinoma tissues act in a tumor-promoting manner.


Assuntos
Carcinoma de Células Renais , Vesículas Extracelulares , Neoplasias Renais , Vesículas Extracelulares/metabolismo , Carcinoma de Células Renais/microbiologia , Carcinoma de Células Renais/patologia , Humanos , Animais , Neoplasias Renais/microbiologia , Neoplasias Renais/patologia , Camundongos , RNA Ribossômico 16S/genética , Linhagem Celular Tumoral , Feminino , Proliferação de Células , DNA Bacteriano/genética , Propionibacteriaceae/genética , Masculino
4.
BMC Microbiol ; 24(1): 58, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365589

RESUMO

BACKGROUND: Accurate identification of bacterial communities is crucial for research applications, diagnostics, and clinical interventions. Although 16S ribosomal RNA (rRNA) gene sequencing is a widely employed technique for bacterial taxonomic classification, it often results in misclassified or unclassified bacterial taxa. This study sought to refine the full-length 16S rRNA gene sequencing protocol using the MinION sequencer, focusing on the V1-V9 regions. Our methodological enquiry examined several factors, including the number of PCR amplification cycles, choice of primers and Taq polymerase, and specific sequence databases and workflows employed. We used a microbial standard comprising eight bacterial strains (five gram-positive and three gram-negative) in known proportions as a validation control. RESULTS: Based on the MinION protocol, we employed the microbial standard as the DNA template for the 16S rRNA gene amplicon sequencing procedure. Our analysis showed that an elevated number of PCR amplification cycles introduced PCR bias, and the selection of Taq polymerase and primer sets significantly affected the subsequent analysis. Bacterial identification at genus level demonstrated Pearson correlation coefficients ranging from 0.73 to 0.79 when assessed using BugSeq, Kraken-Silva and EPI2ME-16S workflows. Notably, the EPI2ME-16S workflow exhibited the highest Pearson correlation with the microbial standard, minimised misclassification, and increased alignment accuracy. At the species taxonomic level, the BugSeq workflow was superior, with a Pearson correlation coefficient of 0.92. CONCLUSIONS: These findings emphasise the importance of careful selection of PCR settings and a well-structured analytical framework for 16S rRNA full-length gene sequencing. The results showed a robust correlation between the predicted and observed bacterial abundances at both the genus and species taxonomic levels, making these findings applicable across diverse research contexts and with clinical utility for reliable pathogen identification.


Assuntos
Nanoporos , RNA Ribossômico 16S/genética , Taq Polimerase/genética , Genes de RNAr , Análise de Sequência de DNA/métodos , DNA Bacteriano/genética , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Vet Res ; 55(1): 19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360700

RESUMO

A positive Mycoplasma hyopneumoniae PCR result in a clinical specimen may eventually represent the mere detection of non-viable bacteria, complicating the diagnostic interpretation. Thus, the objective of this study was to evaluate the PCR detection of non-viable M. hyopneumoniae and its residual cell-free DNA in live pigs. Pigs were inoculated with either active or inactivated M. hyopneumoniae and were sampled for up to 14 days. Mycoplasma hyopneumoniae was not detected by PCR at any timepoint in pigs inoculated with the inactivated bacterium, suggesting that in healthy pigs, the non-viable M. hyopneumoniae DNA was rapidly sensed and cleared.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Doenças dos Suínos , Animais , Suínos , Pneumonia Suína Micoplasmática/diagnóstico , Pneumonia Suína Micoplasmática/microbiologia , Sistema Respiratório , Doenças dos Suínos/microbiologia
6.
Int J Legal Med ; 138(2): 351-360, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775594

RESUMO

The Anthrax mailings bioterrorism attack in 2001 revealed the need for universal and rapid microbial forensic analyses on unknown biological evidence. However, the gold standard for bacterial identification includes culturing isolates, which is laborious. Molecular approaches for bacterial identification revolve around 16S ribosomal gene sequencing using Sanger or next generation sequencing (NGS) platforms, but these techniques are laboratory-based and can also be time-consuming. The Oxford Nanopore Technologies (ONT) MinION sequencer can generate long read lengths that span the entire bacterial 16S rRNA gene and accurately identify the species level. This platform can be used in the field, allowing on-site evidence analysis. However, it requires higher quantities of pure DNA compared to other sequencing platforms; thus, the extraction method for bacterial DNA is critical for downstream analysis, which to date are tailored toward a priori knowledge of the species' taxonomic grouping. During an attack, the investigative team may not know what species they are handling; therefore, identifying an extraction method that can handle all bacterial groups and generate clean DNA for the MinION is useful for microbial forensic analysis. The purpose of this study was to identify a "universal" extraction method that can be coupled with ONT MinION sequencing for use in forensic situations for rapid identification. It also evaluated the cloud-based data analysis software provided by ONT, EPI2ME. No "universal" extraction method was identified as optimal for downstream MinION sequencing. However, the DNeasy PowerSoil Kit and Noda et al. Chelex-100 method gave comparable sequencing results and could be used as rapid extraction techniques. This study showed that the ONT 16S Barcoding Kit 1-24 coupled with the 16S FASTQ workflow might not be the best for use in forensic situations where species-level identification needs to be obtained, as most alignments were approximately 89% accurate. In all seven test organisms and nine extraction methods, accurate species identification was only obtained in 63% of the cases.


Assuntos
Nanoporos , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
7.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39201711

RESUMO

Intestinal dysbiosis is a major contributor to colorectal cancer (CRC) development, leading to bacterial translocation into the bloodstream. This study aimed to evaluate the presence of circulated bacterial DNA (cbDNA) in CRC patients (n = 75) and healthy individuals (n = 25). DNA extracted from peripheral blood was analyzed using PCR, with specific primers targeting 16S rRNA, Escherichia coli (E. coli), and Fusobacterium nucleatum (F. nucleatum). High 16S rRNA and E. coli detections were observed in all patients and controls. Only the detection of F. nucleatum was significantly higher in metastatic non-excised CRC, compared to controls (p < 0.001), non-metastatic excised CRC (p = 0.023), and metastatic excised CRC (p = 0.023). This effect was mainly attributed to the presence of the primary tumor (p = 0.006) but not the presence of distant metastases (p = 0.217). The association of cbDNA with other clinical parameters or co-morbidities was also evaluated, revealing a higher detection of E. coli in CRC patients with diabetes (p = 0.004). These results highlighted the importance of bacterial translocation in CRC patients and the potential role of F. nucleatum as an intratumoral oncomicrobe in CRC.


Assuntos
Neoplasias Colorretais , DNA Bacteriano , Escherichia coli , Fusobacterium nucleatum , RNA Ribossômico 16S , Humanos , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , DNA Bacteriano/genética , DNA Bacteriano/sangue , Idoso , Escherichia coli/genética , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Adulto , Estudos de Casos e Controles , Translocação Bacteriana , Idoso de 80 Anos ou mais , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/sangue , Infecções por Fusobacterium/complicações
8.
Allergy ; 78(10): 2644-2658, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422701

RESUMO

BACKGROUND: An impaired epithelial barrier integrity in the gastrointestinal tract is important to the pathogenesis of many inflammatory diseases. Accordingly, we assessed the potential of biomarkers of epithelial barrier dysfunction as predictive of severe COVID-19. METHODS: Levels of bacterial DNA and zonulin family peptides (ZFP) as markers of bacterial translocation and intestinal permeability and a total of 180 immune and inflammatory proteins were analyzed from the sera of 328 COVID-19 patients and 49 healthy controls. RESULTS: Significantly high levels of circulating bacterial DNA were detected in severe COVID-19 cases. In mild COVID-19 cases, serum bacterial DNA levels were significantly lower than in healthy controls suggesting epithelial barrier tightness as a predictor of a mild disease course. COVID-19 patients were characterized by significantly elevated levels of circulating ZFP. We identified 36 proteins as potential early biomarkers of COVID-19, and six of them (AREG, AXIN1, CLEC4C, CXCL10, CXCL11, and TRANCE) correlated strongly with bacterial translocation and can be used to predict and discriminate severe cases from healthy controls and mild cases (area under the curve (AUC): 1 and 0.88, respectively). Proteomic analysis of the serum of 21 patients with moderate disease at admission which progressed to severe disease revealed 10 proteins associated with disease progression and mortality (AUC: 0.88), including CLEC7A, EIF4EBP1, TRANCE, CXCL10, HGF, KRT19, LAMP3, CKAP4, CXADR, and ITGB6. CONCLUSION: Our results demonstrate that biomarkers of intact or defective epithelial barriers are associated with disease severity and can provide early information on the prediction at the time of hospital admission.


Assuntos
COVID-19 , Proteômica , Humanos , DNA Bacteriano , COVID-19/diagnóstico , Progressão da Doença , Biomarcadores , Permeabilidade , Glicoproteínas de Membrana , Receptores Imunológicos , Lectinas Tipo C
9.
Immun Ageing ; 20(1): 76, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111002

RESUMO

BACKGROUND: Coronavirus disease COVID-19 is a heterogeneous condition caused by SARS-CoV-2 infection. Generally, it is characterized by interstitial pneumonia that can lead to impaired gas-exchange, acute respiratory failure, and death, although a complex disorder of multi-organ dysfunction has also been described. The pathogenesis is complex, and a variable combination of factors has been described in critically ill patients. COVID-19 is a particular risk for older persons, particularly those with frailty and comorbidities. Blood bacterial DNA has been reported in both physiological and pathological conditions and has been associated with some haematological and laboratory parameters but, to date, no study has characterized it in hospitalized old COVID-19 patients The present study aimed to establish an association between blood bacterial DNA (BB-DNA) and clinical severity in old COVID-19 patients. RESULTS: BB-DNA levels were determined, by quantitative real-time PCRs targeting the 16S rRNA gene, in 149 hospitalized older patients (age range 65-99 years) with COVID-19. Clinical data, including symptoms and signs of infection, frailty status, and comorbidities, were assessed. BB-DNA was increased in deceased patients compared to discharged ones, and Cox regression analysis confirmed an association between BB-DNA and in-hospital mortality. Furthermore, BB-DNA was positively associated with the neutrophil count and negatively associated with plasma IFN-alpha. Additionally, BB-DNA was associated with diabetes. CONCLUSIONS: The association of BB-DNA with mortality, immune-inflammatory parameters and diabetes in hospitalized COVID-19 patients suggests its potential role as a biomarker of unfavourable outcomes of the disease, thus it could be proposed as a novel prognostic marker in the assessment of acute COVID-19 disease.

10.
Anaerobe ; 84: 102784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806638

RESUMO

INTRODUCTION: Bacteroides fragilis (B. fragilis) is considered to act in an anti-inflammatory manner on the intestinal tract. On the contrary, enterotoxigenic B. fragilis (ETBF), a subtype of B. fragilis, produces an enterotoxin (BFT; B. fragilis toxin), leading to asymptomatic chronic infections and colonic tumor formation. However, the impact of B. fragilis and ETBF on the clinical outcome of colorectal cancer (CRC) remains unclear. We aim to assess whether their presence affects the outcome in patients with CRC after curative resection. METHODS: We obtained 197 pairs of matched formalin-fixed paraffin-embedded samples from cancerous and adjacent non-cancerous tissues of patients with pathological stage (pstage) II and III CRC after curative resection. The presence of B. fragilis and ETBF were estimated using real-time polymerase chain reaction, and recurrence-free survival (RFS) and overall survival (OS) of the patients were analyzed. RESULTS: 16S rRNA for B. fragilis and bft DNA were detected in 120 (60.9%) and 12 (6.1%) of the 197 patients, respectively. B. fragilis-positive patients had better RFS than B. fragilis-negative patients, although that was not statistically significant. In subgroup analysis, better outcomes on RFS were observed in the presence of B. fragilis in pstage II and left-sided CRC. The association of B. fragilis positivity on OS was accentuated in the depth of T4 subgroup. No significant differences were observed in RFS and OS between ETBF and non-toxigenic B. fragilis. CONCLUSIONS: Our findings suggest that the presence of B. fragilis is associated with better outcomes in patients with pstage II and III CRC after curative resection.


Assuntos
Infecções Bacterianas , Infecções por Bacteroides , Neoplasias Colorretais , Humanos , Bacteroides fragilis/genética , Relevância Clínica , RNA Ribossômico 16S , Prognóstico , Infecções por Bacteroides/diagnóstico , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Infecções Bacterianas/complicações , Metaloendopeptidases/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-37843744

RESUMO

This systematic review aims to learn if and how it is possible to use the human microbiome to indicate the time elapsed after death. Articles were searched on the PubMed database using predefined data fields and keywords; reviews, systematic reviews, and meta-analyses were excluded. The final selection included 14 papers (out of 144). The results indicated that the microorganisms present in the cadaveric island succeed predictably over time, with markers between the stages of decomposition constituting a potential innovative tool for postmortem interval (PMI) estimation. The human microbiome has the potential to be used for PMI estimation and may present advantages as microbes are present in all seasons, in all habitats, including the most extreme ones, and because microbial communities respond predictably to environmental changes.

12.
FASEB J ; 35(7): e21697, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085740

RESUMO

The relevance of environmental triggers in Crohn's disease remains poorly explored, despite the well-known association between industrialization and disease onset/progression. We have aimed at evaluating the influence of endocrine disrupting chemicals in CD patients. We performed a prospective observational study on consecutive patients diagnosed of CD. Serum levels of endocrine disruptors, short-chain fatty acids, tryptophan and cytokines were measured. Bacterial-DNA and serum endotoxin levels were also evaluated. Gene expression of ER-α, ER-ß and GPER was measured in PBMCs. All patients were genotyped for NOD2 and ATG16L1 polymorphisms. A series of 200 CD patients (140 in remission, 60 with active disease) was included in the study. Bisphenol A was significantly higher in patients with active disease versus remission and in colonic versus ileal disease. GPER was significantly increased in active patients and correlated with BPA levels. BPA was significantly increased in patients with bacterial-DNA and correlated with serum endotoxin levels, (r = 0.417; P = .003). Serum butyrate and tryptophan levels were significantly lower in patients with bacterial-DNA and an inverse relationship was present between them and BPA levels (r = -0.491; P = .001) (r = -0.611; P = .001). Serum BPA levels correlated with IL-23 (r = 0.807; P = .001) and IL-17A (r = 0.743; P = .001). The multivariate analysis revealed an independent significant contribution of BPA and bacterial-DNA to serum levels of IL-23 and IL-17A. In conclusion, bisphenol A significantly affects systemic inflammatory response in CD patients with gut barrier disruption and dysbiotic microbiota secretory products in blood. These results provide evidence of an endocrine disruptor playing an actual pathogenic role on CD.


Assuntos
Compostos Benzidrílicos/sangue , Doença de Crohn/patologia , Disbiose/complicações , Disruptores Endócrinos/sangue , Sequestradores de Radicais Livres/sangue , Fenóis/sangue , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adulto , Doença de Crohn/sangue , Doença de Crohn/etiologia , Citocinas/sangue , DNA Bacteriano/sangue , Feminino , Humanos , Masculino , Estudos Prospectivos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/etiologia
13.
Bioorg Chem ; 129: 106186, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36215786

RESUMO

Antimicrobial resistance (AMR) is one of the critical challenges that have been encountered over the past years. On the other hand, bacterial DNA gyrase is regarded as one of the most outstanding biological targets that quinolones can extensively inhibit, improving AMR. Hence, a novel series of 3-(7-nitro-3-oxo-3,4-dihydroquinoxalin-2-yl)propanehydrazide derivatives (3-6j) were designed and synthesized employing the quinoxaline-2-one scaffold and relying on the pharmacophoric features experienced by the quinolone antibiotic; ciprofloxacin. The antibacterial activity of the synthesized compounds was assessed via in-vitro approaches using eight different Gram-positive and Gram-negative bacterial species. Most of the synthesized compounds revealed eligible antibacterial activities. In particular, compounds 6d and 6e displayed promising antibacterial activity among the investigated compounds. For example, compounds 6d and 6e displayed MIC values of 9.40 and 9.00 µM, respectively, regarding S. aureus, and 4.70 and 4.50 µM, respectively, regarding S. pneumonia in comparison to ciprofloxacin (12.07 µM). The cytotoxicity of compounds 6d and 6e were performed on normal human WI-38 cell lines with IC50 values of 288.69 and 227.64 µM, respectively assuring their safety and selectivity. Besides, DNA gyrase inhibition assay of compounds 6d and 6e was carried out in comparison to ciprofloxacin, and interestingly, compounds 6d and 6e disclosed promising IC50 values of 0.242 and 0.177 µM, respectively, whereas ciprofloxacin displayed an IC50 value of 0.768 µM, assuring the proposed mechanism of action for the afforded compounds. Consequently, compounds 6d and 6e were further assessed via in-vivo approaches by evaluating blood counts, liver and kidney functions, and histopathological examination. Both compounds were found to be safer on the liver and kidney than the reference ciprofloxacin. Moreover, in-silico molecular docking studies were established and revealed reasonable binding affinities for all afforded compounds, particularly compound 6d which exhibited a binding score of -7.51 kcal/mol, surpassing the reference ciprofloxacin (-7.29 kcal/mol) with better anticipated stability at the DNA gyrase binding pocket. Moreover, ADME studies were conducted, disclosing an eligible bioavailability score of >0.55 for all afforded compounds, and reasonable GIT absorption without passing the blood brain barrier was attained for most investigated compounds, ensuring their efficacy and safety. Lastly, a structure activity relationship study for the synthesized compounds was established and unveiled that not only the main pharmacophores required for DNA gyrase inhibition are enough for exerting promising antimicrobial activities, but also derivatization with diverse aryl/hetero aryl aldehydes is essential for their enhanced antimicrobial potential.


Assuntos
Quinolonas , Inibidores da Topoisomerase II , Humanos , Antibacterianos/química , Bactérias/metabolismo , Ciprofloxacina , DNA Girase/metabolismo , DNA Bacteriano , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolonas/farmacologia , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
14.
J Perinat Med ; 50(3): 356-362, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-34881545

RESUMO

OBJECTIVES: The aim of this study is to evaluate the diagnostic ability of multiplex real-time polymerase chain reaction (PCR) in very preterm infants assessed for risk of early onset neonatal sepsis (EOS). METHODS: Prospective observational cohort study. Blood samples of preterm neonates ≤32 weeks of gestation were evaluated by commercial multiplex real-time PCR within 2 h after delivery. The definition of EOS was based on positive blood culture and clinical signs of infection or negative blood culture, clinical signs of infection and abnormal neonatal blood count and serum biomarkers. RESULTS: Among 82 subjects analyzed in the study, 15 had clinical or confirmed EOS. PCR was positive in four of these infants (including the only one with a positive blood culture), as well as in 15 of the 67 infants without sepsis (sensitivity 27%, specificity 78%). Out of 19 PCR positive subjects, Escherichia coli was detected in 12 infants (63%). Statistically significant association was found between vaginal E. coli colonization of the mother and E. coli PCR positivity of the neonate (p=0.001). No relationship was found between neonatal E. coli swab results and assessment findings of bacterial DNA in neonatal blood stream. CONCLUSIONS: Multiplex real-time PCR had insufficient diagnostic capability for EOS in high risk very preterm infants. The study revealed no significant association between PCR results and the diagnosis of clinical EOS. Correlation between maternal vaginal swab results and positive PCR in the newborn needs further investigation to fully understand the role of bacterial DNA analysis in preterm infants.


Assuntos
DNA Bacteriano/isolamento & purificação , Recém-Nascido Prematuro , Estudos de Coortes , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Feminino , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Masculino , Reação em Cadeia da Polimerase Multiplex , Sepse Neonatal/diagnóstico , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Vagina/microbiologia
15.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613538

RESUMO

Microbial dysbiosis (MD) provokes gut barrier alterations and bacterial translocation in the bloodstream. The increased blood bacterial DNA (BB-DNA) may promote peripheral- and neuro-inflammation, contributing to cognitive impairment. MD also influences brain-derived neurotrophic factor (BDNF) production, whose alterations contribute to the etiopathogenesis of Alzheimer's disease (AD). The purpose of this study is to measure BB-DNA in healthy elderly controls (EC), and in patients with mild cognitive impairment (MCI) and AD to explore the effect on plasma BDNF levels (pBDNF), the inflammatory response, and the association with cognitive decline during a two-year follow-up. Baseline BB-DNA and pBDNF were significantly higher in MCI and AD than in EC. BB-DNA was positively correlated with pBDNF in AD, plasma Tumor necrosis factor-alpha (TNF-α), and Interleukin-10 (IL-10) levels in MCI. AD patients with BB-DNA values above the 50th percentile had lower baseline Mini-Mental State Examination (MMSE). After a two-year follow-up, AD patients with the highest BB-DNA tertile had a worse cognitive decline, while higher BB-DNA levels were associated with higher TNF-α and lower IL-10 in MCI. Our study demonstrates that, in early AD, the higher the BB-DNA levels, the higher the pBDNF levels, suggesting a defensive attempt; BB-DNA seems to play a role in the AD severity/progression; in MCI, higher BB-DNA may trigger an increased inflammatory response.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Fator Neurotrófico Derivado do Encéfalo , Interleucina-10 , Doença de Alzheimer/diagnóstico , Fator de Necrose Tumoral alfa , Biomarcadores , DNA
16.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163830

RESUMO

Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1ß), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.


Assuntos
Citocinas/sangue , DNA Bacteriano/imunologia , Sulfato de Dextrana/efeitos adversos , Lipopolissacarídeos/imunologia , Mucosite/imunologia , Sepse/imunologia , Animais , Modelos Animais de Doenças , Fezes/microbiologia , Interleucina-10/sangue , Interleucina-6/sangue , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Mucosite/induzido quimicamente , Mucosite/microbiologia , Sepse/induzido quimicamente , Sepse/microbiologia , Fator de Necrose Tumoral alfa/sangue
17.
Molecules ; 26(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374458

RESUMO

The emergence of drug-resistant bacteria emphasizes the urgent need for novel antibiotics. The antimicrobial peptide TS shows extensive antibacterial activity in vitro and in vivo, especially in gram-negative bacteria; however, its antibacterial mechanism is unclear. Here, we find that TS without hemolytic activity disrupts the integrity of the outer bacterial cell membrane by displacing divalent cations and competitively binding lipopolysaccharides. In addition, the antimicrobial peptide TS can inhibit and kill E. coli by disintegrating the bacteria from within by interacting with bacterial DNA. Thus, antimicrobial peptide TS's multiple antibacterial mechanisms may not easily induce bacterial resistance, suggesting use as an antibacterial drug to be for combating bacterial infections in the future.


Assuntos
Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/química
18.
Immunology ; 158(2): 85-93, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31335975

RESUMO

Bacterial DNA contains CpG oligonucleotide (ODN) motifs to trigger innate immune responses through the endosomal receptor Toll-like receptor 9 (TLR9). One of the cell surface receptors to capture and deliver microbial DNA to intracellular TLR9 is the C-type lectin molecule DEC-205 through its N-terminal C-type lectin-like domain (CTLD). CD93 is a cell surface protein and member of the lectin group XIV with a CTLD. We hypothesized that CD93 could interact with CpG motifs, and possibly serve as a novel receptor to deliver bacterial DNA to endosomal TLR9. Using ELISA and tryptophan fluorescence binding studies we observed that the soluble histidine-tagged CD93-CTLD was specifically binding to CpG ODN and bacterial DNA. Moreover, we found that CpG ODN could bind to CD93-expressing IMR32 neuroblastoma cells and induced more robust interleukin-6 secretion when compared with mock-transfected IMR32 control cells. Our data argue for a possible contribution of CD93 to control cell responsiveness to bacterial DNA in a manner reminiscent of DEC-205. We postulate that CD93 may act as a receptor at plasma membrane for DNA or CpG ODN and to grant delivery to endosomal TLR9.


Assuntos
DNA Bacteriano/imunologia , Regulação da Expressão Gênica/imunologia , Glicoproteínas de Membrana/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores de Complemento/imunologia , Receptor Toll-Like 9/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Transporte Biológico/genética , Transporte Biológico/imunologia , Linhagem Celular Tumoral , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Inflamação , Interleucina-6/genética , Interleucina-6/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Biológicos , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/genética
19.
J Appl Microbiol ; 127(2): 429-444, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102430

RESUMO

AIMS: This study evaluated methods to sample and extract nucleic acids from Pacific oysters to accurately determine the microbiome associated with different tissues. METHODS AND RESULTS: Samples were collected from haemolymph, gill, gut and adductor muscle, using swabs and homogenates of solid tissues. Nucleic acids were extracted from fresh and frozen samples using three different commercial kits. The bacterial DNA yield varied between methods (P < 0·05) and each tissue harboured a unique microbiota, except for gill and muscle. Higher bacterial DNA yields were obtained by swabbing compared to tissue homogenates and from fresh tissues compared to frozen tissues, without impacting the bacterial community composition estimated by 16S rRNA gene (V1-V3 region) sequencing. Despite the higher bacterial DNA yields with QIAamp® DNA Microbiome Kit, the E.Z.N.A.® Mollusc DNA Kit identified twice as many operational taxonomic units (OTUs) and eliminated PCR inhibition from gut tissues. CONCLUSIONS: Sampling and nucleic acid purification substantially affected the quantity and diversity of bacteria identified in Pacific oyster microbiome studies and a fit-for-purpose strategy is recommended. SIGNIFICANCE AND IMPACT OF THE STUDY: Accurate identification of Pacific oyster microbial diversity is instrumental for understanding the polymicrobial aetiology of Pacific oyster mortality diseases which greatly impact oyster production.


Assuntos
Bactérias/isolamento & purificação , Crassostrea/microbiologia , DNA Bacteriano/isolamento & purificação , Microbiota/genética , Animais , Bactérias/genética , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Brânquias/microbiologia , Hemolinfa/microbiologia , Músculos/microbiologia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
20.
Knee Surg Sports Traumatol Arthrosc ; 27(11): 3490-3497, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30810788

RESUMO

PURPOSE: To determine if tunnel widening, defined as change in maximal tunnel diameter from the time of initial bone tunnel drilling to revision surgery is associated with bacterial deoxyribonucleic acid (DNA) presence and concentration in torn graft tissue from failed anterior cruciate ligament reconstructions (ACLRs). METHODS: Thirty-four consecutive revision ACLRs were included (mean age 27.3 years SD 10.9; median time to failure 4.9 years range 105 days-20 years). Graft selection of the failed reconstruction was 68% autograft, 26% allograft, and 6% autograft/allograft hybrid with a mean drilled tunnel diameter of 8.4 mm SD 0.8. Maximal tunnel diameters prior to revision were measured on pre-operative three-dimensional imaging and compared to drilled tunnel diameters at the time of the previous reconstruction. Tissue biopsies of the failed graft were obtained from tibial, femoral, and intraarticular segments. Sterile water left open to air during revision ACLRs and tissue from primary ACLRs were used as negative controls. Clinical cultures were obtained on all revision ACLRs and PCR with universal bacterial primer on all cases and negative controls. Fluorescence microscopy was used to confirm the presence and location of biofilms in two patients with retrieved torn graft tissue and fixation material. Amount of tunnel widening was compared to bacterial DNA presence as well as bacterial DNA concentration via Welch ANOVA. RESULTS: Bacterial DNA was present in 29/34 (85%) revision ACLRs, 1/5 (20%) of primary ACLR controls and 0/3 (0%) sterile water controls. Cultures were positive (coagulase negative Staphylococcus sp.) in one case, which also had the greatest degree of tunnel widening. Femoral widening was greater in cases with detectable bacterial DNA (mean widening 2.6 mm SD 3.0) versus without (mean 0.3 mm SD 0.6) (p = 0.003) but was unaffected by bacterial DNA concentration (p = 0.44). Tibial widening was not associated with the presence of bacterial DNA (n.s.); however, higher bacterial DNA concentrations were observed in cases with tibial widening ≥ 3.0 mm (median 2.47 ng bacterial DNA/µg total DNA) versus widening < 3.0 mm (median 0.97 ng bacterial DNA/µg total DNA) (p = 0.046). Tunnel widening was not associated with time to failure, graft selection, or number of prior surgeries (n.s., all comparisons). Fluorescence microscopy confirmed the presence of biofilms on ruptured tendon graft as well as fixation material in 2/2 cases. CONCLUSION: Bacterial DNA is commonly encountered on failed ACLR grafts and can form biofilms. Bacterial DNA does not cause clinically apparent infection symptoms but is associated with tunnel widening. Further research is needed to determine whether graft decontamination protocols can reduce graft bacterial colonization rates, ACLR tunnel widening or ACLR failure risk. LEVEL OF EVIDENCE: Therapeutic III.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/métodos , DNA Bacteriano/análise , Fêmur/microbiologia , Fêmur/cirurgia , Tíbia/microbiologia , Tíbia/cirurgia , Adolescente , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Feminino , Humanos , Masculino , Reoperação , Transplante Autólogo , Transplante Homólogo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa