Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Drug Resist Updat ; 72: 101030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043443

RESUMO

The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla
2.
Caries Res ; 55(3): 205-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010838

RESUMO

It has been suggested that green tea-derived epigallocatechin gallate (EGCG), which has antimicrobial properties, might help prevent dental caries. However, the detailed properties of EGCG remain unclear. In this study, the antimicrobial properties of EGCG were evaluated by examining its bactericidal activity, its inhibitory effects against bacterial growth, acid production, acidic end-product formation, and sugar uptake (phosphoenolpyruvate-dependent phosphotransferase system, PEP-PTS activity), and its effects on bacterial aggregation, using monocultured planktonic cells of Streptococcus mutans and non-mutans streptococci. Coincubating S. mutans with EGCG (1 mg/mL) for 4 h had no bactericidal effects, while it decreased the growth and acid production of S. mutans by inhibiting the activity of the PEP-PTS. EGCG (2 mg/mL) caused rapid bacterial cell aggregation and had reduced the optical density of S. mutans cell suspension by 86.7% at pH 7.0 and 90.7% at pH 5.5 after 2 h. EGCG also reduced the acid production of non-mutans streptococci, including S. sanguinis, S. gordonii, and S. salivarius, and promoted the aggregation of these non-mutans streptococci. Furthermore, these antimicrobial effects of short-term EGCG treatment persisted in the presence of saliva. These results suggest that EGCG might have short-term antibacterial effects on caries-associated streptococci in the oral cavity.


Assuntos
Catequina , Cárie Dentária , Biofilmes , Catequina/análogos & derivados , Catequina/farmacologia , Cárie Dentária/prevenção & controle , Humanos , Streptococcus mutans , Chá
3.
Proteomics ; 17(23-24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28665015

RESUMO

Most bacteria produce adhesion molecules to facilitate the interaction with host cells and establish successful infections. An important group of bacterial adhesins belong to the autotransporter (AT) superfamily, the largest group of secreted and outer membrane proteins in Gram-negative bacteria. AT adhesins possess diverse functions that facilitate bacterial colonisation, survival and persistence, and as such are often associated with increased bacterial fitness and pathogenic potential. In this review, we will describe AIDA-I type AT adhesins, which comprise the biggest and most diverse group in the AT family. We will focus on Escherichia coli proteins and define general aspects of their biogenesis, distribution, structural properties and key roles in infection.


Assuntos
Infecções por Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Adesinas de Escherichia coli/metabolismo , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Regulação Bacteriana da Expressão Gênica
4.
Electrophoresis ; 35(8): 1160-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24338952

RESUMO

Uncontrolled aggregation of bacterial cells is a significant disadvantage of electrophoretic separations. Various aspects of the electrophoretic behavior of different strains of Gram-positive Bacillus cereus, Bacillus subtilis, Sarcina lutea, Staphylococcus aureus(1), and Micrococcus luteus bacteria and Gram-negative Escherichia coli bacteria were investigated in this study. Our findings indicate that bacteria can be rapidly analyzed by CZE with surface charge modification by calcium ions (Ca(2+)). Bound Ca(2+) ions increase zeta potential to more than 2.0 mV and significantly reduce repulsive forces. Under the above conditions, bacterial cells create compact aggregates, and fewer high-intensity signals are observed in electropherograms. The above can be attributed to the bridging effect of Ca(2+) between bacterial cells. CE was performed to analyze bacterial aggregates in an isotachophoretic mode. A single peak was observed in the electropherogram.


Assuntos
Eletroforese Capilar , Escherichia coli/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Cálcio/química , Cátions Bivalentes/química , Eletroforese Capilar/métodos , Escherichia coli/química , Bactérias Gram-Positivas/química
5.
Biomaterials ; 308: 122571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636132

RESUMO

The abuse and overuse of antibiotics let drug-resistant bacteria emerges. Antibacterial photodynamic therapy (APDT) has shown outstanding merits to eliminate the drug-resistant bacteria via cytotoxic reactive oxygen species produced by irradiating photosensitizer. However, most of photosensitizers are not effective for Gram-negative bacteria elimination. Herein conjugates of NBS, a photosensitizer, linked with one (NBS-DPA-Zn) or two (NBS-2DPA-Zn) equivalents of zinc-dipicolylamine (Zn-DPA) have been designed to achieve the functional recognition of different bacteria. Due to the cationic character of NBS and metal transfer channel effect of Zn-DPA, NBS-DPA-Zn exhibited the first regent to distinguish P. aeruginosa from other Gram-negative bacteria. Whereas NBS-2DPA-Zn showed broad-spectrum antibacterial effect because the two arm of double Zn-DPA enhanced interactions with anionic membranes of bacteria, led the bacteria aggregation and thus provided the efficacy of APDT to bacteria and corresponding biofilm. In combination with a hydrogel of Pluronic, NBS-2DPA-Zn@gel shows promising clinical application in mixed bacterial diabetic mouse model infection. This might propose a new method that can realize functional identification and elimination of bacteria through intelligent regulation of Zn-DPA, and shows excellent potential for antibacterial application.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Picolinas , Ácidos Picolínicos , Animais , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Ácidos Picolínicos/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Biofilmes/efeitos dos fármacos , Zinco/química , Pseudomonas aeruginosa/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
6.
Infect Dis Rep ; 16(4): 608-614, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39051246

RESUMO

Background: Bacterial aggregation has been well described to occur in synovial fluid, but it is unknown if bacteria form aggregates in body fluids beyond the synovial fluid. Consequently, this translational study evaluated the ability to form bacterial aggregates in different pleural fluids. Methods: Four of the most common causes of thoracic empyema-Streptococcus mitis, Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa-were used here. The different pleural fluids included one transudative and two exudative pleural fluids. Twenty-four-well microwell plates were used to form the aggregates with the aid of an incubating shaker at different dynamic conditions (120 RPM, 30 RPM, and static). The aggregates were then visualized with SEM and evaluated for antibiotic resistance and the ability of tissue plasminogen activator (TPA) to dissolve the aggregates. Statistical comparisons were made between the different groups. Results: Bacterial aggregates formed at high shaking speeds in all pleural fluid types, but no aggregates were seen in TSB. When a low shaking speed (30 RPM) was used, only exudative pleural fluid with a high protein content formed aggregates. No aggregates formed under static conditions. Furthermore, there was a statistical difference in the CFU/mL of bacteria present after antibiotics were administered compared to bacteria with no antibiotics (p < 0.005) and when TPA plus antibiotics were administered compared to antibiotics alone (p < 0.005). Conclusions: This study shows that bacteria can form aggregates in pleural fluid and at dynamic conditions similar to those seen in vivo with thoracic empyema. Importantly, this study provides a pathophysiological underpinning for the reason why antibiotics alone have a limited utility in treating empyema.

7.
Arch Oral Biol ; 167: 106063, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39128436

RESUMO

OBJECTIVE: Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, exhibits antibacterial activity. In this study, the antimicrobial effects of EGCG on periodontal disease-associated bacteria (Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, and Fusobacterium periodontium) were evaluated and compared with its effects on Streptococcus mutans, a caries-associated bacterium. RESULTS: Treatment with 2 mg/ml EGCG for 4 h killed all periodontal disease-associated bacteria, whereas it only reduced the viable count of S. mutans by about 40 %. Regarding growth, the periodontal disease-associated bacteria were more susceptible to EGCG than S. mutans, based on the growth inhibition ring test. As for metabolism, the 50 % inhibitory concentration (IC50) of EGCG for bacterial metabolic activity was lower for periodontal disease-associated bacteria (0.32-0.65 mg/ml) than for S. mutans (1.14 mg/ml). Furthermore, these IC50 values were negatively correlated with the growth inhibition ring (r = -0.73 to -0.86). EGCG induced bacterial aggregation at the following concentrations: P. gingivalis (>0.125 mg/ml), F. periodonticum (>0.5 mg/ml), F. nucleatum (>1 mg/ml), and P. nigrescens (>2 mg/ml). S. mutans aggregated at an EGCG concentration of > 1 mg/ml. CONCLUSION: EGCG may help to prevent periodontal disease by killing bacteria, inhibiting bacterial growth by suppressing bacterial metabolic activity, and removing bacteria through aggregation.

9.
Sci Total Environ ; 851(Pt 2): 158354, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041622

RESUMO

Microbial aggregates play key roles in cyanobacterial blooms. Being a bacterial communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. However, the regulatory role of QS in the formation of cyanobacteria-associated bacterial aggregates remains poorly understood. Here, we present insight into the role of QS in regulating bacterial aggregate formation in a representative bacterial strain, Novosphingobium sp. ERN07, which was isolated from Microcystis blooms in Lake Taihu. A biosensor assay showed that ERN07 exhibits significant AHL-producing capacity. Biochemical and microscopic analysis revealed that this strain possesses the ability to form aggregated communities. Gene knockout experiments indicated that the AHL-mediated QS system positively regulates bacterial aggregation. The aggregated communities possess the ability to enhance the production of extracellular polymeric substances (EPS), alter EPS composition ratios, and affect biofilm formation. The addition of aggregated substances also has a significant growth-promoting effect on M. aeruginosa. Transcriptomic analysis revealed that the aggregated substances positively regulate photosynthetic efficiency and energy metabolism of M. aeruginosa. These findings show that QS can mediate the aggregation phenotype and associated substrate spectrum composition, contributing to a better understanding of microalgal-bacterial interactions and mechanisms of Microcystis bloom maintenance in the natural environment.


Assuntos
Microcystis , Sphingomonadaceae , Percepção de Quorum , Lagos/microbiologia , Matriz Extracelular de Substâncias Poliméricas , Fenômenos Fisiológicos Bacterianos
10.
Water Res ; 212: 118096, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085842

RESUMO

The microcosmic mechanisms underlying filamentous bulking remain unclear. The role of extracellular polymeric substances (EPS) governed by quorum sensing (QS) in deteriorating sludge floc stability and structure during filamentous bulking and the feasibility of using quorum quenching (QQ) to maintain sludge floc stability and structure and sludge settling were investigated in this study. The results indicated that the concentration of C6HSL increased from 22.08±3.22 ng/g VSS to 81.42±5.98 ng/g VSS during filamentous bulking. The filamentous bacteria gradually evolved the hdtS gene related to the synthesis of C6HSL with increases in the population density. Triggered QS by filamentous bacteria proliferation induced variation in the composition and structure of EPS within the sludge flocs. The proteins (PN) content of the EPS increased evidently from 40.06 ± 2.41 mg/g VSS to 110.32 ± 4.32 mg/g VSS, and the polysaccharides (PS) content slightly increased during filamentous bulking. The upregulated proteins in the EPS led to a decrease in the relative hydrophobicity of the sludge and an increase in negative surface charge. The α-helix/(ß-sheet+random coil) ratio evidently increased from 0.76 to 0.99 during filamentous bulking, revealing that the proteins were tightly structured, which prevented the exposure of inner hydrophobic groups. The total energy of the interaction (WT) between bacteria increased during sludge bulking, which resulted in the weakening of sludge aggregation. Variation in the physicochemical properties of EPS induced by QS in the filamentous bacteria markedly restrained adhesion between the filamentous bacteria and floc-forming bacteria. The production of PN in the EPS and the expression of the hdtS gene were inhibited by vanillin, which served as a QS inhibitor. The WT between bacteria with 50 mg/L of vanillin basically did not change. Filamentous bulking was significantly inhibited by the addition of vanillin. Therefore, QQ is a potential strategy for the prevention and control of filamentous bulking. This study provides new information regarding the microcosmic mechanisms of filamentous bulking.


Assuntos
Percepção de Quorum , Esgotos , Bactérias , Reatores Biológicos , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos Líquidos
11.
Water Res ; 204: 117593, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482094

RESUMO

Reconditioning of food processing water streams for reuse is an increasingly common water management practice in the food industry and UV disinfection is often employed as part of the water treatment. Several factors may impact the effect of UV radiation. Here, we aim to assess the impact of cell aggregation on UV inactivation kinetics and investigate if UV exposure induces aggregation. Three strains, isolated from food processing water reuse lines (Raoultella ornithinolytica, Pseudomonas brenneri, Rothia mucilaginosa) and both an aggregating and a non-aggregating strain of Staphylococcus aureus were exposed to UVC light at 255 nm using UV LED equipment. Total Viable Count and phase-contrast microscopy, coupled with image analysis, were used to compare the UV inactivation kinetics with the average particle size for a range of UV doses. Tailing effect, seen as a strong reduction in inactivation rate, was observed for all strains at higher UV doses (industrial strains ≥ 50 or 120 mJ/cm2, S. aureus strains  ≥ 40 or 60 mJ/cm2). The naturally aggregating strains were more UV tolerant, both within and between species. When aggregates of S. aureus were broken, UV tolerance decreased. For the processing water isolates, the lowest applied UV dose (25 mJ/cm2) significantly increased the average particle size. Application of higher UV doses obtained with longer exposure times did not further increase the particle size compared with untreated samples. For the S. aureus strains, however, no consistent change in average particle size was observed due to UV. Our results demonstrate that aggregating strains have a higher degree of protection and that UV radiation induces aggregation in some, but not all bacteria. A better understanding of the mechanisms governing microbial aggregation and survival during UV treatment could help to improve UV applications and predictions of microbial inactivation.


Assuntos
Staphylococcus aureus , Raios Ultravioleta , Bactérias , Desinfecção , Enterobacteriaceae , Cinética , Micrococcaceae , Pseudomonas
12.
Cell Rep ; 34(8): 108782, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626358

RESUMO

In cystic fibrosis (CF) airways, Pseudomonas aeruginosa forms cellular aggregates called biofilms that are thought to contribute to chronic infection. To form aggregates, P. aeruginosa can use different mechanisms, each with its own pathogenic implications. However, how they form in vivo is controversial and unclear. One mechanism involves a bacterially produced extracellular matrix that holds the aggregates together. Pel and Psl exopolysaccharides are structural and protective components of this matrix. We develop an immunohistochemical method to visualize Pel and Psl in CF sputum. We demonstrate that both exopolysaccharides are expressed in the CF airways and that the morphology of aggregates is consistent with an exopolysaccharide-dependent aggregation mechanism. We reason that the cationic exopolysaccharide Pel may interact with some of the abundant anionic host polymers in sputum. We show that Pel binds extracellular DNA (eDNA) and that this interaction likely impacts current therapies by increasing antimicrobial tolerance and protecting eDNA from digestion.


Assuntos
Fibrose Cística/microbiologia , Pulmão/microbiologia , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Infecções Respiratórias/microbiologia , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/tratamento farmacológico , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana , Expectorantes/uso terapêutico , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Infecções Respiratórias/tratamento farmacológico , Escarro/microbiologia
13.
Dent Mater J ; 39(6): 933-940, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33028784

RESUMO

Apigenin is a type of flavonols that exhibits anti-caries properties. Bacterial adherence is the initial step in the forming of a stable biofilm that leads to caries. Bacterial adherence is affected by surface characteristics, including hydrophobicity and bacterial aggregation. However, the effect of apigenin on surface characteristics of cariogenic bacteria has not been reported. We aimed to examine the effects of apigenin on adherence and biofilm formation of Streptococcus mutans UA159. Hydrophobicity and bacterial aggregation, pac and gbpC gene expressions, and cytotoxicity on human dental pulp cells were also determined. Apigenin significantly inhibited the adherence and biofilm formation of S. mutans. Hydrophobicity decreased, whereas the aggregation rate was significantly increased compared with the control. Apigenin significantly suppressed pac and gbpC gene expressions. Apigenin exhibited acceptable biocompatibility on hDPCs. Thus, apigeinin may affect adherence and biofilm formation by altering the surface properties of S. mutans without obvious adverse effect on hDPCs.


Assuntos
Cárie Dentária , Streptococcus mutans , Apigenina/farmacologia , Biofilmes , Cariostáticos , Cárie Dentária/prevenção & controle , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-32793507

RESUMO

Effective management of infectious osteomyelitis relies on timely microorganism identification and appropriate antibiotic therapy. Extracellular vesicles (EVs) carry protein and genetic information accumulated rapidly in the circulation upon infection. Rat osteomyelitis models infected by Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli were established for the present study. Serum EVs were isolated 3 days after infection. The size and number of serum EVs from infected rats were significantly higher than those from controls. In addition, bacterial aggregation assay showed that the S. aureus and E. coli formed large aggregates in response to the stimulation of serum EVs from S. aureus-infected and E. coli-infected rats, respectively. Treatment of EVs-S. epidermidis led to large aggregates of S. epidermidis and E. coli, whereas stimulation of EVs-P. aeruginosa to large aggregates of S. aureus and P. aeruginosa. To evaluate the changes in EVs in osteomyelitis patients, 28 patients including 5 S. aureus ones and 21 controls were enrolled. Results showed that the size and number of serum EVs from S. aureus osteomyelitis patients were higher than those from controls. Further analysis using receiver operating characteristic curves revealed that only the particle size might be a potential diagnostic marker for osteomyelitis. Strikingly, serum EVs from S. aureus osteomyelitis patients induced significantly stronger aggregation of S. aureus and a cross-reaction with P. aeruginosa. Together, these findings indicate that the size and number of serum EVs may help in the diagnosis of potential infection and that EVs-bacteria aggregation assay may be a quick test to identify infectious microorganisms for osteomyelitis patients.


Assuntos
Vesículas Extracelulares , Osteomielite , Infecções Estafilocócicas , Animais , Biomarcadores , Escherichia coli , Humanos , Osteomielite/diagnóstico , Ratos , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus
15.
Chemosphere ; 248: 126012, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31995736

RESUMO

The control of filamentous sludge bulking has been regarded as an important issue in the activated sludge process due to there is still a lack of understanding of the bulking mechanisms. In this study, changes in the extracellular polymeric substances (EPS) and metabolic profile of bulking sludge based on the proteomics level was investigated to reveal the potential role of EPS in deteriorating sludge floc stability and structure during filamentous bulking. The results showed that the EPS content gradually decreased from 210.23 mg/g volatile suspended solids (VSS) to 131.34 mg/g VSS during sludge bulking. The protein (PN) content of the EPS significantly decreased from 173.33 mg/g VSS to 95.42 mg/g VSS during sludge bulking. However, a gradual increase in polysaccharides (PS) was observed. Bacterial aggregation was hindered by the changes in the EPS and its components. The excessive proliferation of filamentous bacteria had a significant effect on the molecular functions of the extracellular PN and metabolic pathways of the EPS. The proteins associated with the hydrophobic amino acid synthesis decreased, whereas the proteins associated with the hydrophilic amino acid synthesis increased during sludge bulking. Electric repulsion was the key factor affecting the aggregation and flocculation ability of the bacteria during sludge bulking. The changes in the EPS and its components induced by the excessive proliferation of filamentous bacteria resulted in a loose floc structure and poor settling performance during sludge bulking. These findings provide new insights into sludge bulking during the activated sludge process.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Bactérias , Matriz Extracelular de Substâncias Poliméricas , Floculação , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos , Proteínas , Esgotos/química
16.
ACS Appl Mater Interfaces ; 12(24): 26852-26867, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32422035

RESUMO

The influence of side chain residue and phospholipid characteristics of the cytoplasmic membrane upon the fibrillation and bacterial aggregation of arginine (Arg) and tryptophan (Trp) rich antimicrobial peptides (AMPs) has not been well described to date. Here, we utilized the structural advantages of HHC-10 and 4HarHHC-10 (Har, l-homoarginine) that are highly active Trp-rich AMPs and investigated their fibril formation and activity behavior against bacteria. The peptides revealed time-dependent self-assembly of polyproline II (PPII) α-helices, but by comparison, 4HarHHC-10 tended to form higher ordered fibrils due to relatively strong cation-π stacking of Trp with Har residue. Both peptides rapidly killed S. aureus and E. coli at their MICs and caused aggregation of bacteria at higher concentrations. This bacterial aggregation was accompanied by the formation of morphologically distinct electron-dense nanostructures, likely including but not limited to peptides alone. Both HHC-10-derived peptides caused blebs and buds in the E. coli membrane that are rich in POPE phospholipid that promotes negative curvature. However, the main population of S. aureus cells retained their cocci structure upon treatment with HHC peptides even at concentration higher than the MICs. In contrast, the cell aggregation was not induced by HHC fibrils that were most likely stabilized through intra-/intermolecular cation-π stacking. It is proposed that masking of these interactions might have resulted in diminished membrane association/insertion of the HHC nanostructures. The peptides caused aggregation of POPC/POPG (1/3) and POPE/POPG (3/1) liposomes. Nonetheless, disaggregation of the former vesicles was observed at ratios of lipid to peptide of greater than 6 and 24 for HHC-10 and 4HarHHC-10, respectively. Collectively, our results revealed dose-dependent bacterial aggregation mediated by Trp-rich AMPs that was profoundly influenced by the degree of peptide's self-association and the composition and intrinsic curvature of the cytoplasmic membrane lipids.


Assuntos
Lipossomos/química , Peptídeos/química , Fosfolipídeos/química , Triptofano/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
17.
Cells ; 9(3)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32214032

RESUMO

Phenol-soluble modulins (PSMs) are major determinants of Staphylococcus aureus virulence and their increased production in community-associated methicillin-resistant S. aureus (CA-MRSA) likely contributes to the enhanced virulence of MRSA strains. Here, we analyzed the differences in bacterial cell aggregation according to PSM presence in the specific human cerebrospinal fluid (CSF) environment. CSF samples from the intraventricular or lumbar intrathecal area of each patient and tryptic soy broth media were mixed at a 1:1 ratio, inoculated with WT and PSM-deleted mutants (Δpsm) of the CA-MRSA strain, USA300 LAC, and incubated overnight. Cell aggregation images were acquired after culture and image analysis was performed. The cell aggregation ratio in WT samples differed significantly between the two sampling sites (intraventricular: 0.2% vs. lumbar intrathecal: 6.7%, p < 0.001). The cell aggregation ratio in Δpsm samples also differed significantly between the two sampling sites (intraventricular: 0.0% vs. lumbar intrathecal: 1.2%, p < 0.001). Division of the study cases into two groups according to the aggregated area ratio (WT/Δpsm; group A: ratio of ≥ 2, group B: ratio of < 2) showed that the median aggregation ratio value differed significantly between groups A and B (5.5 and 0, respectively, p < 0.001). The differences in CSF distribution and PSM presence within the specific CSF environment are significant factors affecting bacterial cell aggregation.


Assuntos
Toxinas Bacterianas/metabolismo , Staphylococcus aureus Resistente à Meticilina/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biofilmes/crescimento & desenvolvimento , Criança , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Solubilidade , Adulto Jovem
18.
Virulence ; 10(1): 194-206, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30829556

RESUMO

Streptococcus canis is a zoonotic agent that causes serious invasive diseases in domestic animals and humans, but knowledge about its pathogenic potential and underlying virulence mechanisms is limited. Here, we report on the ability of certain S. canis isolates to form large bacterial aggregates when grown in liquid broth. Bacterial aggregation was attributed to the presence and the self-binding activity of SCM, the M protein of S. canis, as evaluated by bacterial sedimentation assays, immunofluorescence- and electron microscopic approaches. Using a variety of truncated recombinant SCM fragments, we demonstrated that homophilic SCM interactions occur via the N-terminal, but not the C-terminal part, of the mature M protein. Interestingly, when incubated in human plasma, SCM forms soluble protein complexes comprising its known ligands, immunoglobulin G (IgG) and plasminogen (Plg). Co-incubation studies with purified host proteins revealed that SCM-mediated complex formation is based on the interaction of SCM with itself and with IgG, but not with Plg or fibrinogen (Fbg), well-established constituents of M protein-mediated protein complexes in human-associated streptococci. Notably, these soluble, SCM-mediated plasma complexes harbored complement factor C1q, which can induce complement breakdown in the periphery and therefore represent another immune evasion mechanism of SCM.


Assuntos
Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Streptococcus/fisiologia , Anticorpos Antibacterianos/metabolismo , Fibrinogênio , Humanos , Ligação Proteica
19.
Environ Pollut ; 247: 1100-1109, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30823339

RESUMO

The effects of fulvic acid (FA) and ions on mesophilic pathogenic bacteria survival under freeze-thaw (FT) stress in natural water and its resistant mechanisms are rarely understood. Therefore, survival patterns of Escherichia coli in river water added with various concentrations of FA or FA-ion under FT stress were studied in this work. Meanwhile, cell surface hydrophobicity (CSH), unit activities of superoxide dismutase (SOD) and catalase (CAT) were determined and Escherichia coli morphologies were observed to explore the bacterial resistant mechanisms against FT stress. The results demonstrated that FT cycles significantly reduced bacterial quantities as sampling time, i.e. freeze-thaw cycle time increased. And the biggest reducing rate was observed after the first FT cycle in every system. Ttd values, time needed to reach detection limit under FT stress decreased under FT stress as FA was added into water, while the changes of ttd values were quite complicated when FA and various ions existed together. Generally, the ttd values of FA-cation systems exceeded that of FA system except FA-Ca2+ systems, but it was opposite for FA-anion systems. CSH was heightened after FT cycles and reached peak value at last sampling time in every system. Mechanical constraint from extracellular ice crystals and high CSH induced bacterial aggregation, which protect inner cells of aggregation from extracellular ice crystals. And the unit activities of SOD were significantly higher than those of CAT. Unit activities of SOD and CAT in large part of tested systems increased with sampling time under FT stress, which reduced reactive oxygen species produced from repeated FT cycles. Thus, these could improve the resistance of Escherichia coli to freeze-thaw stress and promote their survival. This work explored the survival pattern and strategy of Escherichia coli in natural water under FT stress.


Assuntos
Benzopiranos/metabolismo , Monitoramento Ambiental/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Congelamento , Íons/metabolismo , Rios/microbiologia , China , Temperatura Baixa
20.
Methods Mol Biol ; 1483: 393-406, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27645746

RESUMO

Rapid detection and identification of microorganisms is a challenging and important aspect in many areas of our life, beginning with medicine, ending with industry. Unfortunately, classical methods of microorganisms identification are based on time-consuming and labor-intensive approaches. Screening techniques require rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demands comprehensive bacterial studies on molecular level. The new approach to the rapid identification of bacteria is to use the electromigration techniques, especially capillary zone electrophoresis (CZE). CZE is an important technique used in the analysis of microorganisms. However, the analysis of microbial complexes using this technology still encounters several problems-uncontrolled aggregation and/or adhesion to the capillary surface. One way to resolve this issue is the CZE analysis of microbial cell with surface charge modification by bivalent metal ions (e.g., Ca(2+) aq, Zn aq). Under the above conditions, bacterial cells create compact aggregates, and fewer high-intensity signals are observed in electropherograms. The chapter presents the capillary electrophoresis of microbial aggregates approach with UV and one-dimensional intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (ICM MS) detection.


Assuntos
Eletroforese Capilar/métodos , Escherichia coli/isolamento & purificação , Saccharomyces cerevisiae/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Escherichia coli/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa