Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Microbiol ; 47(2): 123-136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023521

RESUMO

The escalating global population poses formidable challenges to addressing pressing environmental concerns, hindering progress towards sustainable development goals. Unregulated human activities, particularly the excessive reliance on fossil fuels and unsustainable agricultural practices, contribute to pollution, climate change, and resource depletion. Inadequate waste management systems exacerbate environmental degradation and pose risks to public health. Leveraging biological resources and urban/industrial waste emerges as a promising solution. Various waste materials, such as food waste and agro-industrial by-products, have been efficiently repurposed into valuable bio-based products. This review explores the diverse applications of agricultural and food waste repurposing, including microbial production of biopolymers and biosurfactants, as well as the extraction of biologically active compounds for potential antimicrobial drugs.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Humanos , Biomassa , Gerenciamento de Resíduos/métodos , Materiais Biocompatíveis , Resíduos/análise
2.
EJNMMI Radiopharm Chem ; 9(1): 49, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896373

RESUMO

BACKGROUND: Infection remains a major cause of morbidity and mortality, regardless of advances in antimicrobial therapy and improved knowledge of microorganisms. With the major global threat posed by antimicrobial resistance, fast and accurate diagnosis of infections, and the reliable identification of intractable infection, are becoming more crucial for effective treatment and the application of antibiotic stewardship. Molecular imaging with the use of nuclear medicine allows early detection and localisation of infection and inflammatory processes, as well as accurate monitoring of treatment response. There has been a continuous search for more specific radiopharmaceuticals to be utilised for infection imaging. This review summarises the most prominent discoveries in specifically bacterial infection imaging agents over the last five years, since 2019. MAIN BODY: Some promising new radiopharmaceuticals evaluated in patient studies are reported here, including radiolabelled bacterial siderophores like [68Ga]Ga-DFO-B, radiolabelled antimicrobial peptide/peptide fragments like [68Ga]Ga-NOTA-UBI29-41, and agents that target bacterial synthesis pathways (folic acid and peptidoglycan) like [11C]para-aminobenzoic acid and D-methyl-[11C]-methionine, with clinical trials underway for [18F]fluorodeoxy-sorbitol, as well as for 11C- and 18F-labelled trimethoprim. CONCLUSION: It is evident that a great deal of effort has gone into the development of new radiopharmaceuticals for infection imaging over the last few years, with remarkable progress in preclinical investigations. However, translation to clinical trials, and eventually clinical Nuclear Medicine practice, is apparently slow. It is the authors' opinion that a more structured and harmonised preclinical setting and well-designed clinical investigations are the key to reliably evaluate the true potential of the newly proposed infection imaging agents.

3.
Heliyon ; 9(11): e21678, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027855

RESUMO

The Pseudomonas aeruginosa OG1 strain was used in the bacterial synthesis of MgSe compound nanoparticles. The obtained samples were subsequently shaped into nanocrystalline MgSe films, and their optical, structural, morphological, and electrical properties were assessed on glass and p-Si substrates. Structural and morphological characterizations showed that the fabricated thin film samples have a polycrystalline structure with high quality and uniform grain sizes. The MgSe films produced on glass substrates exhibit a direct spectral band gap of 2.53 eV, according to optical measurements. The Ag/MgSe/p-Si layered diode structure was fabricated using the produced MgSe nanoparticles and then characterized by electrical properties. Electrical measurements were carried out under these two conditions to assess the effects of dark and illumination conditions on the band dynamics of the heterostructure devices. Under illumination, the barrier height decreased while the interface density states distribution increased. These measurements showed that using bacterial-assisted grown MgSe nanocrystalline films, the developed Ag/MgSe/p-Si device structure exhibited a remarkable photoresponse and stable rectifying property. Green synthesis methods for the production of these nanocrystalline materials have the potential to offer low-cost alternatives for photosensitive applications.

4.
Materials (Basel) ; 14(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34771866

RESUMO

The purpose of the work was to obtain composites based on bionanocellulose (BNC) and poly(vinyl alcohol) (PVA) for specific biomedical and cosmetic applications and to determine how the method and conditions of their preparation affect their utility properties. Three different ways of manufacturing these composites (in-situ method and ex-situ methods combined with sterilization or impregnation) were presented. The structure and morphology of BNC/PVA composites were studied by ATR-FTIR spectroscopy and scanning microscopy (SEM, AFM). Surface properties were tested by contact angle measurements. The degree of crystallinity of the BNC fibrils was determined by means of the XRD method. The mechanical properties of the BNC/PVA films were examined using tensile tests and via the determination of their bursting strength. The water uptake of the obtained materials was determined through the gravimetric method. The results showed that PVA added to the nutrient medium caused an increase in biosynthesis yield. Moreover, an increase in base weight was observed in composites of all types due to the presence of PVA. The ex-situ composites revealed excellent water absorption capacity. The in-situ composites appeared to be the most durable and elastic materials.

5.
Methods Mol Biol ; 2159: 67-81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32529364

RESUMO

The human guanylate-binding protein 1 (hGBP1) is the best characterized isoform of the seven human GBPs belonging to the superfamily of dynamin-like proteins (DLPs). As known for other DLPs, hGBP1 also exhibits antiviral and antimicrobial activity within the cell. hGBP 1, like hGBPs 2 and 5, carries a CAAX motive at the C-terminus leading to isoprenylation in the living cells. The attachment of a farnesyl anchor and its unique GTPase cycle provides hGBP1 the ability of a nucleotide- stimulated polymerization and membrane binding. In this chapter, we want to show how to prepare farnesylated hGBP1 (hGBP1fn) by bacterial synthesis and by enzymatic modification, respectively, and how to purify the non-farnesylated, as well as the farnesylated hGBP1, by chromatographic procedures. Furthermore, we want to demonstrate how to investigate the special features of polymerization by a UV-absorption-based turbidity assay and the binding to artificial membranes by means of fluorescence energy transfer.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/isolamento & purificação , Multimerização Proteica , Membrana Celular/metabolismo , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Prenilação , Ligação Proteica , Proteínas Recombinantes , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa