Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Bioelectromagnetics ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778514

RESUMO

Fifth generation (5G) wireless communication is being rolled out around the world. In this work, the latest radio frequency electromagnetic field (EMF) exposure measurement results on commercial 28-GHz band 5G base stations (BSs) deployed in the urban area of Tokyo, Japan, are presented. The measurements were conducted under realistic traffic conditions with a 5G smartphone and using both omnidirectional and horn antennas. First and foremost, in all cases, the electric-field (E-field) intensity is much lower (<-38 dB) than the exposure limits. The E-field intensities for traffic-off cases do not show any significant difference between the two antennas with the maximum being 3.6 dB. For traffic-on cases, the omnidirectional antenna can undesirably capture the radio wave from the smartphone in some cases, resulting in a 7-13 dB higher E-field intensity than that using the horn antenna. We also present comparative results between 4G long term evolution BSs and sub-6-GHz band and 28-GHz band 5G BSs and provide recommendations on acquiring meaningful EMF exposure data. This work is a further step toward the standardization of the measurement method regarding quasi-millimeter/millimeter wave 5G BSs.

2.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679588

RESUMO

Aging is one of the greatest challenges in modern society. The development of wearable solutions for telemonitoring biological signals has been viewed as a strategy to enhance older adults' healthcare sustainability. This study aims to review the biological signals remotely monitored by technologies in older adults. PubMed, the Cochrane Database of Systematic Reviews, the Web of Science, and the Joanna Briggs Institute Database of Systematic Reviews and Implementation Reports were systematically searched in December 2021. Only systematic reviews and meta-analyses of remote health-related biological and environmental monitoring signals in older adults were considered, with publication dates between 2016 and 2022, written in English, Portuguese, or Spanish. Studies referring to conference proceedings or articles with abstract access only were excluded. The data were extracted independently by two reviewers, using a predefined table form, consulting a third reviewer in case of doubts or concerns. Eighteen studies were included, fourteen systematic reviews and four meta-analyses. Nine of the reviews included older adults from the community, whereas the others also included institutionalized participants. Heart and respiratory rate, physical activity, electrocardiography, body temperature, blood pressure, glucose, and heart rate were the most frequently measured biological variables, with physical activity and heart rate foremost. These were obtained through wearables, with the waist, wrist, and ankle being the most mentioned body regions for the device's placement. Six of the reviews presented the psychometric properties of the systems, most of which were valid and accurate. In relation to environmental signals, only two articles presented data on this topic. Luminosity, temperature, and movement were the most mentioned variables. The need for large-scale long-term health-related telemonitoring implementation of studies with larger sample sizes was pointed out by several reviews in order to define the feasibility levels of wearable devices.


Assuntos
Hospitalização , Dispositivos Eletrônicos Vestíveis , Humanos , Idoso , Revisões Sistemáticas como Assunto , Monitorização Fisiológica , Exercício Físico
3.
Sensors (Basel) ; 23(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631720

RESUMO

Recently, federated learning (FL) has been receiving great attention as an effective machine learning method to avoid the security issue in raw data collection, as well as to distribute the computing load to edge devices. However, even though wireless communication is an essential component for implementing FL in edge networks, there have been few works that analyze the effect of wireless networks on FL. In this paper, we investigate FL in small-cell networks where multiple base stations (BSs) and users are located according to a homogeneous Poisson point process (PPP) with different densities. We comprehensively analyze the effects of geographic node deployment on the model aggregation in FL on the basis of stochastic geometry-based analysis. We derive the closed-form expressions of coverage probability with tractable approximations and discuss the minimum required BS density for achieving a target model aggregation rate in small-cell networks. Our analysis and simulation results provide insightful information for understanding the behaviors of FL in small-cell networks; these can be exploited as a guideline for designing the network facilitating wireless FL.

4.
Sensors (Basel) ; 23(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067877

RESUMO

The advancement of cellular communication technology has profoundly transformed human life. People can now watch high-definition videos anytime, anywhere, and aim for the implementation of advanced autonomous driving capabilities. However, the sustainability of such an environment is threatened by false base stations. False base stations execute attacks in the Radio Access Network (RAN) of cellular systems, adversely affecting the network or its users. To address this challenge, we propose a behavior rule specification-based false base station detection system, SMDFbs. We derive behavior rules from the normal operations of base stations and convert these rules into a state machine. Based on this state machine, we detect network anomalies and mitigate threats. We conducted experiments detecting false base stations in a 5G RAN simulator, comparing our system with seven machine learning-based detection techniques. The experimental results showed that our proposed system achieved a detection accuracy of 98% and demonstrated lower overhead compared to other algorithms.

5.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005465

RESUMO

This paper proposes an energy-efficient multi-level sleep mode control for periodic transmission (MSC-PUT) in private fifth-generation (5G) networks. In general, private 5G networks meet IIoT requirements but face rising energy consumption due to dense base station (BS) deployment, particularly impacting operating expenses (OPEX). An approach of BS sleep mode has been studied to reduce energy consumption, but there has been insufficient consideration for the periodic uplink transmission of industrial Internet of Things (IIoT) devices. Additionally, 5G New Reno's synchronization signal interval limits the effectiveness of the deepest sleep mode in reducing BS energy consumption. By addressing this issue, the aim of this paper is to propose an energy-efficient multi-level sleep mode control for periodic uplink transmission to improve the energy efficiency of BSs. In advance, we develop an energy-efficient model that considers the trade-off between throughput impairment caused by increased latency and energy saving by sleep mode operation for IIoT's periodic uplink transmission. Then, we propose an approach based on proximal policy optimization (PPO) to determine the deep sleep mode of BSs, considering throughput impairment and energy efficiency. Our simulation results verify the proposed MSC-PUT algorithm's effectiveness in terms of throughput, energy saving, and energy efficiency. Specifically, we verify that our proposed MSC-PUT enhances energy efficiency by nearly 27.5% when compared to conventional multi-level sleep operation and consumes less energy at 75.21% of the energy consumed by the conventional method while incurring a throughput impairment of nearly 4.2%. Numerical results show that the proposed algorithm can significantly reduce the energy consumption of BSs accounting for periodic uplink transmission of IIoT devices.

6.
Sensors (Basel) ; 23(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836904

RESUMO

Battery replacement or recharging is essential for sensor nodes because they are typically powered by batteries in wireless sensor network (WSN) applications. Therefore, creating an energy-efficient data transfer technique is required. The base station (BS) receives data from one sensor node and routes the data to another sensor node. As a result, an energy-efficient routing algorithm using fuzzy logic (EERF) represents a novel approach that is suggested in this study. One of the reasoning techniques utilized in scenarios where there is a lot of ambiguity is fuzzy logic. The remaining energy, the distance between the sensor node and the base station, and the total number of connected sensor nodes are all inputs given to the fuzzy system of the proposed EERF algorithm. The proposed EERF is contrasted with the current systems, like the energy-aware unequal clustering using fuzzy logic (EAUCF) and distributed unequal clustering using fuzzy logic (DUCF) algorithms, in terms of evaluation criteria, including energy consumption, the number of active sensor nodes for each round in the network, and network stability. EAUCF and DUCF were outperformed by EERF.

7.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679522

RESUMO

The tracking of objects and person position, orientation, and movement is relevant for various medical use cases, e.g., practical training of medical staff or patient rehabilitation. However, these demand high tracking accuracy and occlusion robustness. Expensive professional tracking systems fulfill these demands, however, cost-efficient and potentially adequate alternatives can be found in the gaming industry, e.g., SteamVR Tracking. This work presents an evaluation of SteamVR Tracking in its latest version 2.0 in two experimental setups, involving two and four base stations. Tracking accuracy, both static and dynamic, and occlusion robustness are investigated using a VIVE Tracker (3.0). A dynamic analysis further compares three different velocities. An error evaluation is performed using a Universal Robots UR10 robotic arm as ground-truth system under nonlaboratory conditions. Results are presented using the Root Mean Square Error. For static experiments, tracking errors in the submillimeter and subdegree range are achieved by both setups. Dynamic experiments achieved errors in the submillimeter range as well, yet tracking accuracy suffers from increasing velocity. Four base stations enable generally higher accuracy and robustness, especially in the dynamic experiments. Both setups enable adequate accuracy for diverse medical use cases. However, use cases demanding very high accuracy should primarily rely on SteamVR Tracking 2.0 with four base stations.


Assuntos
Movimento , Humanos
8.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991612

RESUMO

5G demands a significant increment in the number of connected devices. As a result, gNodeBs are constantly pushed to serve more spectrum and smaller sectors. These increased capacity demands are met by using multiband antennas in base stations. One of the key challenges with multiband antennas is the pattern distortions due to the presence of other surrounding antenna element structures. This work provides a novel approach to address the challenge of pattern distortion in the lower frequency band 690-960 MHz due to common-mode (CM) currents in the high- frequency-band antenna element operating in the 1810-2690 MHz band. A common-mode suppression circuit is integrated with the impedance matching network of the high-band antenna element to reduce these common-mode currents. The experimental results verified that the common-mode suppression circuit reduces the common-mode currents at low-band frequencies by moving the common-mode resonance frequency outside the low frequency band, resulting in cleaner low-band patterns meeting pattern specifications.

9.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960624

RESUMO

As a strategy to coordinate inter-cell interference in cellular networks, a fractional frequency reuse (FFR) system is proposed, in which the frequency bandwidth is split into two orthogonal bands; users staying near the center of a FFR cell use the band with a frequency reuse (FR) factor of one (i.e., full FR), and users located close to the cell edge utilize the band with a FR factor greater than one (i.e., partial FR). Full FR coverage, which identifies full FR and partial FR regions (that is, near-center and near-edge regions) within a FFR cell, has a crucial effect on system performance. Some of the authors of this paper recently investigated the optimization of full FR coverage to maximize system throughput. They analytically showed that under the constraint of satisfying a specified target outage probability, the optimal full FR coverage is a non-increasing function of base station power when all base station powers in the cellular network are scaled at an equal rate. Interestingly, in this paper, it is proven that as the power of a single base station is scaled, the optimal full FR coverage in that cell is a non-decreasing function of base station power. Our results provide useful insight into the design of full FR coverage in relation to the transmit power of a base station. It gives a deeper understanding of the intricate relationship between important FFR system parameters of base station power and full FR coverage.

10.
Entropy (Basel) ; 25(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36832641

RESUMO

This study presents a novel dual-polarized magnetoelectric dipole antenna and its array with director and rectangular parasitic metal patches for LTE and 5G sub-6 GHz base station applications. This antenna is composed of L-shaped magnetic dipoles, planar electric dipoles, rectangular director, rectangular parasitic metal patches, and η-shaped feed probes. The gain and bandwidth were enhanced by using the director and parasitic metal patches. The measured impedance bandwidth of the antenna was 82.8% (1.62-3.91 GHz, VSWR < 1.5), and its gain was 10 ± 0.5 dBi. The profile of the antenna unit, operated at 1.7 GHz, was only 42 mm (0.227λ0, where λ0 represents the free space wavelength corresponding to the lowest resonance frequency point). Subsequently, four antenna units were arranged in a line array with 0.6λ0 spacing. Both the antenna and its array were fabricated and measured. The measurement results show that the array has good radiation characteristics, such as broad bandwidth covering 1.65-3.97 GHz (VSWR < 1.5), high gain (its gain was great than 15.2 dBi), and high radiation efficiency (>90%). Its HPBWs were 63° ± 4° and 15° ± 2° for H- and E-planes, respectively. The design can cover TD-LTE and 5G sub-6 GHz NR n78 frequency bands very well, meaning that this is a good candidate antenna for base station applications.

11.
Environ Res ; 214(Pt 2): 113851, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35843283

RESUMO

The objective of this work was to perform a complete review of the existing scientific literature to update the knowledge on the effects of base station antennas on humans. Studies performed in real urban conditions, with mobile phone base stations situated close to apartments, were selected. Overall results of this review show three types of effects by base station antennas on the health of people: radiofrequency sickness (RS), cancer (C) and changes in biochemical parameters (CBP). Considering all the studies reviewed globally (n = 38), 73.6% (28/38) showed effects: 73.9% (17/23) for radiofrequency sickness, 76.9% (10/13) for cancer and 75.0% (6/8) for changes in biochemical parameters. Furthermore, studies that did not meet the strict conditions to be included in this review provided important supplementary evidence. The existence of similar effects from studies by different sources (but with RF of similar characteristics), such as radar, radio and television antennas, wireless smart meters and laboratory studies, reinforce the conclusions of this review. Of special importance are the studies performed on animals or trees near base station antennas that cannot be aware of their proximity and to which psychosomatic effects can never be attributed.


Assuntos
Telefone Celular , Neoplasias , Animais , Campos Eletromagnéticos , Humanos , Neoplasias/epidemiologia , Ondas de Rádio/efeitos adversos
12.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015890

RESUMO

Unmanned Aerial Vehicle (UAV) deployment and placement are largely dependent upon the available energy, feasible scenario, and secure network. The feasible placement of UAV nodes to cover the cellular networks need optimal altitude. The under or over-estimation of nodes' air timing leads to of resource waste or inefficiency of the mission. Multiple factors influence the estimation of air timing, but the majority of the literature concentrates only on flying time. Some other factors also degrade network performance, such as unauthorized access to UAV nodes. In this paper, the UAV coverage issue is considered, and a Coverage Area Decision Model for UAV-BS is proposed. The proposed solution is designed for cellular network coverage by using UAV nodes that are controlled and managed for reallocation, which will be able to change position per requirements. The proposed solution is evaluated and tested in simulation in terms of its performance. The proposed solution achieved better results in terms of placement in the network. The simulation results indicated high performance in terms of high packet delivery, less delay, less overhead, and better malicious node detection.


Assuntos
Aeronaves , Dispositivos Aéreos não Tripulados , Altitude , Simulação por Computador
13.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560002

RESUMO

As an indispensable type of information, location data are used in various industries. Ultrawideband (UWB) technology has been used for indoor location estimation due to its excellent ranging performance. However, the accuracy of the location estimation results is heavily affected by the deployment of base stations; in particular, the base station deployment space is limited in certain scenarios. In underground mines, base stations must be placed on the roof to ensure signal coverage, which is almost coplanar in nature. Existing indoor positioning solutions suffer from both difficulties in the correct convergence of results and poor positioning accuracy under coplanar base-station conditions. To correctly estimate position in coplanar base-station scenarios, this paper proposes a novel iterative method. Based on the Newton iteration method, a selection range for the initial value and iterative convergence control conditions were derived to improve the convergence performance of the algorithm. In this paper, we mathematically analyze the impact of the localization solution for coplanar base stations and derive the expression for the localization accuracy performance. The proposed method demonstrated a positioning accuracy of 5 cm in the experimental campaign for the comparative analysis, with the multi-epoch observation results being stable within 10 cm. Furthermore, it was found that, when base stations are coplanar, the test point accuracy can be improved by an average of 63.54% compared to the conventional positioning algorithm. In the base-station coplanar deployment scenario, the upper bound of the CDF convergence in the proposed method outperformed the conventional positioning algorithm by about 30%.

14.
Sensors (Basel) ; 22(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36298326

RESUMO

In this paper, the implementation of a Wireless Sensor Network (WSN) for environmental monitoring (EM) is presented. It includes the design, implementation and experimental characterization of a multi-sector base station (BS) antenna composed of several microstrip Quasi-Yagi elements and the implementation and experimental characterization of a reduced form factor antenna for the sensor nodes (SN). Subsequently, it reports the implementation of a WSN based on Lopy4 transceivers, using the developed BS and SN antennas. Finally, experimental results obtained on the field to evaluate the performance of the network in terms of maximum coverage distance and coverage area are presented. According to the field tests, the connectivity between the sensor nodes and the developed WSN base station is confirmed at distances above 3.5 km and for all the antenna sectors of the multi-sector BS attaining a 360° of field of view.


Assuntos
Monitoramento Ambiental
15.
Sensors (Basel) ; 22(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35957310

RESUMO

The next generation 6G wireless systems are envisioned to have higher reliability and capacity than the existing cellular systems. The reconfigurable intelligent surfaces (RISs)-assisted wireless networks are one of the promising solutions to control the wireless channel by altering the electromagnetic properties of the signal. The dual connectivity (DC) increases the per-user throughput by utilizing radio resources from two different base stations. In this work, we propose the RIS-assisted DC system to improve the per-user throughput of the users by utilizing resources from two base stations (BSs) in proximity via different RISs. Given an α-fair utility function, the joint resource allocation and the user scheduling of a RIS-assisted DC system is formulated as an optimization problem and the optimal user scheduling time fraction is derived. A heuristic is proposed to solve the formulated optimization problem with the derived optimal user scheduling time fractions. Exhaustive simulation results for coverage and throughput of the RIS-assisted DC system are presented with varying user, BS, blockage, and RIS densities for different fairness values. Further, we show that the proposed RIS-assisted DC system provides significant throughput gain of 52% and 48% in certain scenarios when compared to the existing benchmark and DC systems.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Simulação por Computador , Reprodutibilidade dos Testes , Alocação de Recursos
16.
Sensors (Basel) ; 22(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957474

RESUMO

In the Long Term Evolution (LTE) system, the Signal Propagation Model (SPM) and the location information of the base stations are required for positioning a smartphone. To this end, this paper proposes a technique for estimating the SPM and the location of the base station at the same time using location-based Reference Signal Received Power (RSRP) information acquired in a limited area. In the proposed technique, multiple Virtual Locations (VLs) for a base station are set within the service area. Signal propagation modelling is performed based on the assumptions that a base station is in each VL and the RSRP measurements are obtained from the corresponding base station. The residuals between the outputs of the estimated SPM and the RSRP measurements are then calculated. The VL with the minimum sum of the squared residuals is determined as the location of the base station. At the same time, the SPM estimated based on the corresponding VL is selected as the SPM of the base station. As a result of the experiment in Seoul, it was confirmed that the positions of seven base stations were estimated with an average accuracy of 40.2 m.


Assuntos
Smartphone
17.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015782

RESUMO

With the significant rise in demand for network utilization, such as data transmission and device-to-device (D2D) communication, fifth-generation (5G) networks have been proposed to fill the demand. Deploying 5G enhances the utilization of network channels and allows users to exploit licensed channels in the absence of primary users (PUs). In this paper, a hybrid route selection mechanism is proposed, and it allows the central controller (CC) to evaluate the route map proactively in a centralized manner for source nodes. In contrast, source nodes are enabled to make their own decisions reactively and select a route in a distributed manner. D2D communication is preferred, which helps networks to offload traffic from the control plane to the data plane. In addition to the theoretical analysis, a real testbed was set up for the proof of concept; it was composed of eleven nodes with independent processing units. Experiment results showed improvements in traffic offloading, higher utilization of network channels, and a lower interference level between primary and secondary users. Packet delivery ratio and end-to-end delay were affected due to a higher number of intermediate nodes and the dynamicity of PU activities.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Comunicação
18.
Entropy (Basel) ; 24(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36554172

RESUMO

Aiming at the path planning problem of unmanned aerial vehicle (UAV) base stations when performing search tasks, this paper proposes a Double DQN-state splitting Q network (DDQN-SSQN) algorithm that combines state splitting and optimal state to complete the optimal path planning of UAV based on the Deep Reinforcement Learning DDQN algorithm. The method stores multidimensional state information in categories and uses targeted training to obtain optimal path information. The method also references the received signal strength indicator (RSSI) to influence the reward received by the agent, and in this way reduces the decision difficulty of the UAV. In order to simulate the scenarios of UAVs in real work, this paper uses the Open AI Gym simulation platform to construct a mission system model. The simulation results show that the proposed scheme can plan the optimal path faster than other traditional algorithmic schemes and has a greater advantage in the stability and convergence speed of the algorithm.

19.
Environ Res ; 193: 110583, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285159

RESUMO

The effects of radiofrequency exposure on the health of people living near mobile-phone base stations (MPBSs) have been the subject of several studies since the mid-2000s, with contradictory results. We aimed to investigate the association between measured exposure to radiofrequency electromagnetic fields (RF-EMF) from MPBSs and the presence of self-reported non-specific and insomnia-like symptoms. A cross-sectional survey conducted between 2015 and 2017 in five large cities in France involved 354 people living in buildings located at a distance of 250 m or less from an MPBS and in the main transmit beam of the antennas. Information on environmental concerns, anxiety, and non-specific and insomnia-like symptoms was collected with a questionnaire administrated by telephone. A complete broadband field-meter measurement [100 kHz - 6 GHz] was then made at five points of each dwelling, followed by a spectral analysis at the point of highest exposure, detailing the contribution of each service, including MPBS. The median exposure from MPBS was 0.27 V/m (0.44 V/m for global field), ranging from 0.03 V/m to 3.58 V/m, MPBSs being the main source of exposure for 64% of the dwellings. In this study population, the measured exposure from MPBSs was not associated with self-reported non-specific or insomnia-like symptoms. However, for insomnia-like symptoms, a significant interaction was found between RF-EMF exposure from MPBSs and environmental concerns. These findings do not support the hypothesis of an effect of RF-EMF from MPBSs on non-specific or insomnia-like symptoms in the overall population. Studies are needed to further investigate the positive association observed between exposure from MPBSs and insomnia-like symptoms among people reporting environmental concerns.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Cidades , Estudos Transversais , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental , França , Humanos , Ondas de Rádio/efeitos adversos
20.
Environ Res ; 194: 110500, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221309

RESUMO

In response to the demand from a growing number of people concerned about the possible impact of RF-EMF on health, the French National Frequency Agency (ANFR) has published a standardized protocol for in-situ measurements of radiofrequency electromagnetic fields (RF-EMF). This protocol was based on the search for the point of highest field strength and the use of spot measurement. In the framework of an epidemiological study, such spot measurements were implemented in the homes of 354 participants located in urban areas within 250 m of a mobile-phone base station (MPBS) and in the main beam direction of the antenna. Among the participants, more than half accepted to be enrolled in a longer-term study, among whom 152 were equipped with a personal exposure meter (PEM) for 48 h and 40 for seven continuous days. Both spot and PEM measurements quantified downlink field strengths, i.e. FM, TV3-4-5, TETRA I-II-III, 2 GHz-5GHz Wi-Fi, WiMax, GSM900, GSM1800, UMTS900, UMTS 2100, LTE800, LTE1800, and LTE2600. Spot measurements showed a mean/median field strength of 0.58/0.44 V/m for total RF-EMF and 0.43/0.27 V/m from the MPBS. RF-EMF from the MPBS was the dominant source of exposure in 64% of households. Exposure to RF-EMF was influenced by the position of the windows with respect to the MPBS, in particular line-of-site visibility, the distance of the antenna and the floor of the apartment. The PEM surveys showed the measured exposure to be higher during outings than at home and during the day than at night, but there was no difference between the weekends and working days. There was a strong correlation between exposure quantified by both spot and PEM measurements, although spot measures were approximately three times higher than those by PEMs. This study is the first to assess exposure to RF-EMF of people living near a MPBS in urban areas in France. These preliminary results suggest the value of using spot measurements to estimate the impact of the evolution of the mobile-phone network and technology on the exposure of populations to RF-EMF. The low levels of RF-RMF expressed as mean values do not necessarily rule out possible health effects of this exposure.


Assuntos
Telefone Celular , Exposição Ambiental , Campos Eletromagnéticos , França , Humanos , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa