Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Neurosci ; 43(42): 6972-6987, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37640552

RESUMO

Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.


Assuntos
Interneurônios , Neurônios , Camundongos , Animais , Interneurônios/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Dendritos/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Parvalbuminas/metabolismo
2.
Cereb Cortex ; 33(7): 3882-3909, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36058205

RESUMO

Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyramidal neurons, respectively. Using multiple immunofluorescence, confocal microscopy and 3D quantification techniques, we have estimated the number and density of GABAergic boutons on the cell body and AIS of pyramidal neurons located through cortical layers of the human and mouse neocortex. The results revealed, in both species, that there is clear variability across layers regarding the density and number of perisomatic GABAergic boutons. We found a positive linear correlation between the surface area of the soma, or the AIS, and the number of GABAergic terminals in apposition to these 2 neuronal domains. Furthermore, the density of perisomatic GABAergic boutons was higher in the human cortex than in the mouse. These results suggest a selectivity for the GABAergic innervation of the cell body and AIS that might be related to the different functional attributes of the microcircuits in which neurons from different layers are involved in both human and mouse.


Assuntos
Segmento Inicial do Axônio , Neocórtex , Humanos , Camundongos , Animais , Corpo Celular , Neurônios/fisiologia , Células Piramidais/metabolismo , Axônios/fisiologia , Sinapses/fisiologia
3.
Cerebellum ; 21(6): 905-919, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34676525

RESUMO

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system, synthesized by two isoforms of glutamate decarboxylase (GAD): GAD65 and GAD67. GABA may act as a trophic factor during brain development, but its contribution to the development and maturation of cerebellar neural circuits is not known. To understand the roles of GABA in cerebellar organization and associated functions in motor coordination and balance, we examined GAD65 conventional knock out (KO) mice and mice in which GAD67 was eliminated in parvalbumin-expressing neurons (PV-Cre; GAD67flox/flox mice). We found aberrant subcellular localization of the Shaker-type K channel Kv1.1 in basket cell collaterals of PV-Cre; GAD67 flox/flox mice and abnormal projections from basket cells to Purkinje cells in both mouse strains. We also found that altered synaptic properties of basket cell terminals to Purkinje cells in PV-Cre; GAD67flox/flox mice. Furthermore, PV-Cre; GAD67 flox/flox mice exhibited abnormal motor coordination in the rotarod test. These results indicate that GABA signaling in the cerebellum is critical for establishing appropriate connections between basket cells and Purkinje cells and is associated with motor coordination in mice.


Assuntos
Glutamato Descarboxilase , Células de Purkinje , Animais , Camundongos , Glutamato Descarboxilase/genética , Células de Purkinje/metabolismo , Parvalbuminas/metabolismo , Ácido gama-Aminobutírico , Cerebelo/metabolismo , Camundongos Knockout
4.
Neurobiol Dis ; 155: 105382, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940180

RESUMO

The unique fast spiking (FS) phenotype of cortical parvalbumin-positive (PV) neurons depends on the expression of multiple subtypes of voltage-gated potassium channels (Kv). PV neurons selectively express Kcns3, the gene encoding Kv9.3 subunits, suggesting that Kcns3 expression is critical for the FS phenotype. KCNS3 expression is lower in PV neurons in the neocortex of subjects with schizophrenia, but the effects of this alteration are unclear, because Kv9.3 subunit function is poorly understood. Therefore, to assess the role of Kv9.3 subunits in PV neuron function, we combined gene expression analyses, computational modeling, and electrophysiology in acute slices from the cortex of Kcns3-deficient mice. Kcns3 mRNA levels were ~ 50% lower in cortical PV neurons from Kcns3-deficient relative to wildtype mice. While silent per se, Kv9.3 subunits are believed to amplify the Kv2.1 current in Kv2.1-Kv9.3 channel complexes. Hence, to assess the consequences of reducing Kv9.3 levels, we simulated the effects of decreasing the Kv2.1-mediated current in a computational model. The FS cell model with reduced Kv2.1 produced spike trains with irregular inter-spike intervals, or stuttering, and greater Na+ channel inactivation. As in the computational model, PV basket cells (PVBCs) from Kcns3-deficient mice displayed spike trains with strong stuttering, which depressed PVBC firing. Moreover, Kcns3 deficiency impaired the recruitment of PVBC firing at gamma frequency by stimuli mimicking synaptic input observed during cortical UP states. Our data indicate that Kv9.3 subunits are critical for PVBC physiology and suggest that KCNS3 deficiency in schizophrenia could impair PV neuron firing, possibly contributing to deficits in cortical gamma oscillations in the illness.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Parvalbuminas/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Esquizofrenia/genética
5.
Cerebellum ; 19(2): 286-308, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32002802

RESUMO

In the developing cerebellum, the nascent white matter (WM) serves as an instructive niche for cerebellar cortical inhibitory interneurons. As their Pax2 expressing precursors transit the emerging WM, their laminar fate is programmed. The source(s) and nature of the signals involved remain unknown. Here, we used immunocytochemistry to follow the cellular maturation of the murine cerebellar WM during this critical period. During the first few days of postnatal development, when most Pax2 expressing cells are formed and many of them reach the cerebellar gray matter, only microglial cells can be identified in the territories through which Pax2 cells migrate. From p4 onward, cells expressing the oligodendrocytic or astrocyte markers, CNP-1, MBP or GFAP, started to appear in the nascent WM. Expression of macroglial markers increased with cerebellar differentiation, yet deep nuclei remained GFAP-negative at all ages. The progressive spread of maturing glia did not correlate with the exit of Pax2 cells from the WM, as indicated by the extensive mingling of these cells up to p15. Whereas sonic hedgehog-associated p75NTR expression could be verified in granule cell precursors, postmitotic Pax2 cells are p75NTR negative at all ages analyzed. Thus, if Pax2 cells, like their precursors, are sensitive to sonic hedgehog, this does not affect their expression of p75NTR. Our findings document that subsequently generated sets of Pax2 expressing precursors of inhibitory cerebellar interneurons are confronted with a dynamically changing complement of cerebellar glia. The eventual identification of fate-defining pathways should profit from the covariation with glial maturation predicted by the present findings.


Assuntos
Cerebelo/crescimento & desenvolvimento , Interneurônios/citologia , Neurogênese/fisiologia , Substância Branca/crescimento & desenvolvimento , Animais , Cerebelo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Substância Branca/citologia
6.
J Neurosci ; 38(12): 3124-3146, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29453207

RESUMO

Hippocampal ripples are involved in memory consolidation, but the mechanisms underlying their generation remain unclear. Models relying on interneuron networks in the CA1 region disagree on the predominant source of excitation to interneurons: either "direct," via the Schaffer collaterals that provide feedforward input from CA3 to CA1, or "indirect," via the local pyramidal cells in CA1, which are embedded in a recurrent excitatory-inhibitory network. Here, we used physiologically constrained computational models of basket-cell networks to investigate how they respond to different conditions of transient, noisy excitation. We found that direct excitation of interneurons could evoke ripples (140-220 Hz) that exhibited intraripple frequency accommodation and were frequency-insensitive to GABA modulators, as previously shown in in vitro experiments. In addition, the indirect excitation of the basket-cell network enabled the expression of intraripple frequency accommodation in the fast-gamma range (90-140 Hz), as in vivo In our model, intraripple frequency accommodation results from a hysteresis phenomenon in which the frequency responds differentially to the rising and descending phases of the transient excitation. Such a phenomenon predicts a maximum oscillation frequency occurring several milliseconds before the peak of excitation. We confirmed this prediction for ripples in brain slices from male mice. These results suggest that ripple and fast-gamma episodes are produced by the same interneuron network that is recruited via different excitatory input pathways, which could be supported by the previously reported intralaminar connectivity bias between basket cells and functionally distinct subpopulations of pyramidal cells in CA1. Together, our findings unify competing inhibition-first models of rhythm generation in the hippocampus.SIGNIFICANCE STATEMENT The hippocampus is a part of the brain of humans and other mammals that is critical for the acquisition and consolidation of memories. During deep sleep and resting periods, the hippocampus generates high-frequency (∼200 Hz) oscillations called ripples, which are important for memory consolidation. The mechanisms underlying ripple generation are not well understood. A prominent hypothesis holds that the ripples are generated by local recurrent networks of inhibitory neurons. Using computational models and experiments in brain slices from rodents, we show that the dynamics of interneuron networks clarify several previously unexplained characteristics of ripple oscillations, which advances our understanding of hippocampus-dependent memory consolidation.


Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Consolidação da Memória/fisiologia , Modelos Neurológicos , Animais , Simulação por Computador , Moduladores GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Masculino , Consolidação da Memória/efeitos dos fármacos , Camundongos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos
7.
Cereb Cortex ; 28(2): 411-420, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122807

RESUMO

An interneuron alteration has been proposed as a source for the modified balance of excitation / inhibition in the cerebral cortex in autism. We previously demonstrated a decreased number of parvalbumin (PV)-expressing interneurons in prefrontal cortex in autism. PV-expressing interneurons include chandelier (Ch) and basket (Bsk) cells. We asked whether the decreased PV+ interneurons affected both Ch cells and Bsk cells in autism. The lack of single markers to specifically label Ch cells or Bsk cells presented an obstacle for addressing this question. We devised a method to discern between PV-Ch and PV-Bsk cells based on the differential expression of Vicia villosa lectin (VVA). VVA binds to N-acetylgalactosamine, that is present in the perineuronal net surrounding some cell types where it plays a role in intercellular communication. N-acetylgalactosamine is present in the perineuronal net surrounding Bsk but not Ch cells. We found that the number of Ch cells is consistently decreased in the prefrontal cortex of autistic (n = 10) when compared with control (n = 10) cases, while the number of Bsk cells is not as severely affected. This finding expand our understanding of GABAergic system functioning in the human cerebral cortex in autism, which will impact translational research directed towards providing better treatment paradigms for individuals with autism.


Assuntos
Transtorno Autístico/patologia , Neurônios/patologia , Córtex Pré-Frontal/patologia , Adolescente , Adulto , Transtorno Autístico/metabolismo , Contagem de Células/métodos , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Parvalbuminas/biossíntese , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Adulto Jovem
8.
Eur J Neurosci ; 48(12): 3446-3465, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30414336

RESUMO

Sharp wave-ripples (SWRs) are important for memory consolidation. Their signature in the hippocampal extracellular field potential can be decomposed into a ≈100 ms long sharp wave superimposed by ≈200 Hz ripple oscillations. How ripple oscillations are generated is currently not well understood. A promising model for the genesis of ripple oscillations is based on recurrent interneuronal networks (INT-INT). According to this hypothesis, the INT-INT network in CA1 receives a burst of excitation from CA3 that generates the sharp wave, and recurrent inhibition leads to an ultrafast synchronization of the CA1 network causing the ripple oscillations; fast-spiking parvalbumin-positive basket cells (PV+  BCs) may constitute the ripple-generating interneuronal network. PV+  BCs are also coupled by gap junctions (GJs) but the function of GJs for ripple oscillations has not been quantified. Using simulations of CA1 hippocampal networks of PV+  BCs, we show that GJs promote synchrony beyond a level that could be obtained by only inhibition. GJs also increase the neuronal firing rate of the interneuronal ensemble, while they affect the ripple frequency only mildly. The promoting effect of GJs on ripple oscillations depends on fast GJ transmission ( ≲ 0.5 ms), which requires proximal GJ coupling ( ≲ 100 µm from soma), but is robust to variability in the delay and the amplitude of GJ coupling.


Assuntos
Junções Comunicantes/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Consolidação da Memória/fisiologia , Potenciais de Ação/fisiologia , Animais , Modelos Neurológicos , Neurônios/fisiologia
9.
Cereb Cortex ; 27(3): 1931-1943, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26922658

RESUMO

The cognitive phenotype of autism has been correlated with an altered balance of excitation to inhibition in the cerebral cortex, which could result from a change in the number, function, or morphology of GABA-expressing interneurons. The number of GABAergic interneuron subtypes has not been quantified in the autistic cerebral cortex. We classified interneurons into 3 subpopulations based on expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. We quantified the number of each interneuron subtype in postmortem neocortical tissue from 11 autistic cases and 10 control cases. Prefrontal Brodmann Areas (BA) BA46, BA47, and BA9 in autism and age-matched controls were analyzed by blinded researchers. We show that the number of parvalbumin+ interneurons in these 3 cortical areas-BA46, BA47, and BA9-is significantly reduced in autism compared with controls. The number of calbindin+ and calretinin+ interneurons did not differ in the cortical areas examined. Parvalbumin+ interneurons are fast-spiking cells that synchronize the activity of pyramidal cells through perisomatic and axo-axonic inhibition. The reduced number of parvalbumin+ interneurons could disrupt the balance of excitation/inhibition and alter gamma wave oscillations in the cerebral cortex of autistic subjects. These data will allow development of novel treatments specifically targeting parvalbumin interneurons.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Parvalbuminas/metabolismo , Adolescente , Adulto , Calbindina 2/metabolismo , Calbindinas/metabolismo , Contagem de Células , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Hippocampus ; 26(12): 1641-1654, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27701794

RESUMO

It has been suggested that increased GABAergic innervation in the hippocampus plays a significant role in cognitive dysfunction in Down syndrome (DS). Bolstering this notion, are studies linking hyper-innervation of the dentate gyrus (DG) by GABAergic terminals to failure in LTP induction in the Ts65Dn mouse model of DS. Here, we used extensive morphometrical methods to assess the status of GABAergic interneurons in the DG of young and old Ts65Dn mice and their 2N controls. We detected an age-dependent increase in GABAergic innervation of dentate granule cells (DGCs) in Ts65Dn mice. The primary source of GABAergic terminals to DGCs somata is basket cells (BCs). For this reason, we assessed the status of these cells and found a significant increase in the number of BCs in Ts65Dn mice compared with controls. Then we aimed to identify the gene/s whose overexpression could be linked to increased number of BCs in Ts65Dn and found that deleting the third copy of App gene in Ts65Dn mice led to normalization of the number of BCs in these mice. Our data suggest that App overexpression plays a major role in the pathophysiology of GABAergic hyperinnervation of the DG in Ts65Dn mice. © 2016 Wiley Periodicals, Inc.


Assuntos
Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Giro Denteado/patologia , Síndrome de Down/patologia , Neurônios GABAérgicos/patologia , Interneurônios/patologia , Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Giro Denteado/metabolismo , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Neurônios GABAérgicos/metabolismo , Imuno-Histoquímica , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismo , Receptores de Ácido Caínico/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Ácido gama-Aminobutírico/metabolismo
11.
J Neurosci ; 34(6): 2321-30, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501371

RESUMO

Purkinje cells (PCs) of the cerebellar cortex are necessary for controlling movement with precision, but a mechanistic explanation of how the activity of these inhibitory neurons regulates motor output is still lacking. We used an optogenetic approach in awake mice to show for the first time that transiently suppressing spontaneous activity in a population of PCs is sufficient to cause discrete movements that can be systematically modulated in size, speed, and timing depending on how much and how long PC firing is suppressed. We further demonstrate that this fine control of movement kinematics is mediated by a graded disinhibition of target neurons in the deep cerebellar nuclei. Our results prove a long-standing model of cerebellar function and provide the first demonstration that suppression of inhibitory signals can act as a powerful mechanism for the precise control of behavior.


Assuntos
Movimento/fisiologia , Inibição Neural/fisiologia , Optogenética/métodos , Estimulação Luminosa/métodos , Células de Purkinje/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Estimulação Elétrica/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Hippocampus ; 25(11): 1336-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25864919

RESUMO

Temporal lobe epilepsy (TLE) is a common type of epilepsy with hippocampus as the usual site of origin. The CA3 subfield of hippocampus is reported to have a low epileptic threshold and hence initiates the disorder in patients with TLE. This study computationally investigates how impaired dendritic inhibition of pyramidal cells in the vulnerable CA3 subfield leads to generation of epileptic activity. A model of CA3 subfield consisting of 800 pyramidal cells, 200 basket cells (BC) and 200 Oriens-Lacunosum Moleculare (O-LM) interneurons was used. The dendritic inhibition provided by O-LM interneurons is reported to be selectively impaired in some TLEs. A step-wise approach is taken to investigate how alterations in network connectivity lead to generation of epileptic patterns. Initially, dendritic inhibition alone was reduced, followed by an increase in the external inputs received at the distal dendrites of pyramidal cells, and finally additional changes were made at the synapses between all neurons in the network. In the first case, when the dendritic inhibition of pyramidal cells alone was reduced, the local field potential activity changed from a theta-modulated gamma pattern to a prominently gamma frequency pattern. In the second case, in addition to this reduction of dendritic inhibition, with a simultaneous large increase in the external excitatory inputs received by pyramidal cells, the basket cells entered a state of depolarization block, causing the network to generate a typical ictal activity pattern. In the third case, when the dendritic inhibition onto the pyramidal cells was reduced and changes were simultaneously made in synaptic connectivity between all neurons in the network, the basket cells were again observed to enter depolarization block. In the third case, impairment of dendritic inhibition required to generate an ictal activity pattern was lesser than the two previous cases. Moreover, the ictal like activity began earlier in the third case. Hence, our study suggests that greater synaptic plasticity occurring in the whole network due to increase in reception of external excitatory inputs (due to impaired dendritic inhibition) makes the network more susceptible to generation of epileptic activity.


Assuntos
Região CA3 Hipocampal/fisiologia , Dendritos/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Inibição Neural/fisiologia , Redes Neurais de Computação , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Humanos
13.
Neuron ; 112(5): 755-771.e9, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38215739

RESUMO

The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission.


Assuntos
Sinapses , Transmissão Sináptica , Reprodutibilidade dos Testes , Células de Purkinje , Terminações Pré-Sinápticas , Cálcio
14.
Front Neurosci ; 17: 1132980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081933

RESUMO

Dendrites of fast-spiking basket cells (FS BCs) impact neural circuit functions in brain with both supralinear and sublinear integration strategies. Diverse spatial synaptic inputs and active properties of dendrites lead to distinct neuronal firing patterns. How the FS BCs with this bi-modal dendritic integration respond to different spatial dispersion of synaptic inputs remains unclear. In this study, we construct a multi-compartmental model of FS BC and analyze neuronal firings following simulated synaptic protocols from fully clustered to fully dispersed. Under these stimulation protocols, we find that supralinear dendrites dominate somatic firing of FS BC, while the preference for dispersing is due to sublinear dendrites. Moreover, we find that dendritic diameter and Ca2+-permeable AMPA conductance play an important role in it, while A-type K+ channel and NMDA conductance have little effect. The obtained results may give some implications for understanding dendritic computation.

15.
Br J Pharmacol ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38073073

RESUMO

BACKGROUND AND PURPOSE: P2X4 receptors (P2X4R) are ligand gated cation channels that are activated by extracellular ATP released by neurons and glia. The receptors are widely expressed in the brain and have fractional calcium currents comparable with NMDA receptors. Although P2X4Rs have been reported to modulate synaptic transmission and plasticity, their involvement in shaping neuronal network activity remains to be elucidated. EXPERIMENTAL APPROACH: We investigated the effects of P2X receptors at network and synaptic level using local field potential electrophysiology, whole cell patch clamp recordings and calcium imaging in fast spiking parvalbumin positive interneurons (PVINs) in rat and mouse hippocampal slices. The stable ATP analogue ATPγS, selective antagonists and P2X4R knockout mice were used. KEY RESULTS: The P2XR agonist ATPγS reversibly decreased the power of gamma oscillations. This inhibition could be antagonized by the selective P2X4R antagonist PSB-12062 and was not observed in P2X4-/- mice. The phasic excitatory inputs of CA3 PVINs were one of the main regulators of the gamma power. Associational fibre compound excitatory postsynaptic currents (cEPSCs) in CA3 PVINs were inhibited by P2X4R activation. This effect was reversible, dependent on intracellular calcium and dynamin-dependent internalization of AMPA receptors. CONCLUSIONS AND IMPLICATIONS: The results indicate that P2X4Rs are an important source of dendritic calcium in CA3 PVINs, thereby regulating excitatory synaptic inputs onto the cells and presumably the state of gamma oscillations in the hippocampus. P2X4Rs represent an effective target to modulate hippocampal network activity in pathophysiological conditions such as Alzheimer's disease and schizophrenia.

16.
Epilepsy Curr ; 22(1): 54-60, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233202

RESUMO

Epileptic seizures are associated with excessive neuronal spiking. Perisomatic γ-aminobutyric acid (GABA)ergic interneurons specifically innervate the subcellular domains of postsynaptic excitatory cells that are critical for spike generation. With a revolution in transcriptomics-based cell taxonomy driving the development of novel transgenic mouse lines, selectively monitoring and modulating previously elusive interneuron types is becoming increasingly feasible. Emerging evidence suggests that the three types of hippocampal perisomatic interneurons, axo-axonic cells, along with parvalbumin- and cholecystokinin-expressing basket cells, each follow unique activity patterns in vivo, suggesting distinctive roles in regulating epileptic networks.

17.
Cell Rep ; 39(11): 110948, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705055

RESUMO

Dendrites are essential determinants of the input-output relationship of single neurons, but their role in network computations is not well understood. Here, we use a combination of dendritic patch-clamp recordings and in silico modeling to determine how dendrites of parvalbumin (PV)-expressing basket cells contribute to network oscillations in the gamma frequency band. Simultaneous soma-dendrite recordings from PV basket cells in the dentate gyrus reveal that the slope, or gain, of the dendritic input-output relationship is exceptionally low, thereby reducing the cell's sensitivity to changes in its input. By simulating gamma oscillations in detailed network models, we demonstrate that the low gain is key to increase spike synchrony in PV basket cell assemblies when cells are driven by spatially and temporally heterogeneous synaptic inputs. These results highlight the role of inhibitory neuron dendrites in synchronized network oscillations.


Assuntos
Interneurônios , Parvalbuminas , Potenciais de Ação/fisiologia , Dendritos/fisiologia , Interneurônios/fisiologia , Neurônios
18.
Exp Neurol ; 342: 113724, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915166

RESUMO

Temporal lobe epilepsy (TLE) is characterized by recurrent spontaneous seizures and behavioral comorbidities. Reduced hippocampal theta oscillations and hyperexcitability that contribute to cognitive deficits and spontaneous seizures are present beyond the sclerotic hippocampus in TLE. However, the mechanisms underlying compromised network oscillations and hyperexcitability observed in circuits remote from the sclerotic hippocampus are largely unknown. Cholecystokinin (CCK)-expressing basket cells (CCKBCs) critically participate in hippocampal theta rhythmogenesis, and regulate neuronal excitability. Thus, we examined whether CCKBCs were vulnerable in nonsclerotic regions of the ventral hippocampus remote from dorsal sclerotic hippocampus using the intrahippocampal kainate (IHK) mouse model of TLE, targeting unilateral dorsal hippocampus. We found a decrease in the number of CCK+ interneurons in ipsilateral ventral CA1 regions from epileptic mice compared to those from sham controls. We also found that the number of boutons from CCK+ interneurons was reduced in the stratum pyramidale, but not in other CA1 layers, of ipsilateral hippocampus in epileptic mice, suggesting that CCKBCs are vulnerable. Electrical recordings showed that synaptic connectivity and strength from surviving CCKBCs to CA1 pyramidal cells (PCs) were similar between epileptic mice and sham controls. In agreement with reduced CCKBC number in TLE, electrical recordings revealed a significant reduction in amplitude and frequency of IPSCs in CA1 PCs evoked by carbachol (commonly used to excite CCK+ interneurons) in ventral CA1 regions from epileptic mice versus sham controls. These findings suggest that loss of CCKBCs beyond the hippocampal lesion may contribute to hyperexcitability and compromised network oscillations in TLE.


Assuntos
Região CA1 Hipocampal/metabolismo , Colecistocinina/biossíntese , Epilepsia do Lobo Temporal/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Ácido Caínico/toxicidade , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Colecistocinina/genética , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Expressão Gênica , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Neuroscience ; 455: 113-127, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33359654

RESUMO

Inhibitory circuits in the basolateral nuclear complex of the amygdala (BNC) critical for controlling the acquisition, expression, and extinction of emotional responses are mediated by GABAergic interneurons (INs). Studies in rodents have demonstrated that separate IN subpopulations, identified by their expression of calcium-binding proteins and neuropeptides, play discrete roles in the intrinsic circuitry of the BNC. Far less is known about IN subpopulations in primates. In order to fill in this gap in our understanding of primate INs, the present investigation used dual-labeling immunohistochemistry for IN markers to identify subpopulations expressing cholecystokinin (CCK), calbindin (CB), calretinin (CR), and somatostatin (SOM) in somata and axon terminals in the monkey BNC. In general, colocalization patterns seen in somata and axon terminals were similar. It was found that there was virtually no colocalization of CB and CR, the two calcium-binding proteins investigated. Three subtypes of CCK-immunoreactive (CCK+) INs were identified on the basis of their expression of CR or CB: (1) CCK+/CR+; (2) CCK+/CB+); and (3) CCK+/CR-/CB-. Almost no colocalization of CCK with SOM was observed, but there was extensive colocalization of SOM and CB. CCK+, CR+, and CCK+/CR+ double-labeled axon terminals were seen surrounding pyramidal cell somata in basket-like plexuses, as well as in the neuropil. CB+, SOM+, and CB+/SOM+ terminals did not form baskets, suggesting that these IN subpopulations are mainly dendrite-targeting neurons. In general, the IN subpopulations in the monkey are not dissimilar to those seen in rodents but, unlike rodents, CB+ INs in the monkey are not basket cells.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Interneurônios , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Calbindina 2 , Calbindinas , Feminino , Interneurônios/metabolismo , Macaca mulatta , Masculino , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo
20.
Front Neural Circuits ; 15: 721015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790099

RESUMO

We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7-9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets.


Assuntos
Colículos Inferiores , Animais , Axônios , Núcleos Cerebelares , Dendritos , Cobaias , Neurônios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa