Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39485946

RESUMO

Resource recovery from retired electric vehicle lithium-ion batteries (LIBs) is a key to sustainable supply of technology-critical metals. However, the mainstream pyrometallurgical recycling approach requires high temperature and high energy consumption. Our study proposes a novel mechanochemical processing combined with hydrogen (H2) reduction strategy to accelerate the breakdown of ternary nickel cobalt manganese oxide (NCM) cathode materials at a significantly lower temperature (450 °C). Particle refinement, material amorphization, and internal energy storage are considered critical success factors for the accelerated decomposition of NCM cathode materials. In our proposed approach, NCM cathode materials can develop active sites with carbon defects (Cv) and oxygen vacancies (Ov), which improve the reduction and breakdown of H2. The adsorbed H2 on the surface of NCM decomposes into H* and combines with oxygen to form OH species, which can be facilitated by Ov via the enhanced charge transfer. The introduced Cv can enhance H2 cracking and generate *C-H species to promote the thermal decomposition of NCM. The presence of defects proves to foster the preferential reduction of Mn(IV) by H2, leading to a lower activation energy for the NCM decomposition (from 139 to 110 kJ/mol) with less H2 consumption. Life cycle assessment suggests a reduction of 4.42 kg CO2 eq for the recycling of every 1.0 kg of retired batteries. This study can promote material circularity and minimize the environmental burden of mining technology-critical metals for a low-carbon transition.

2.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124981

RESUMO

The recycling and recovery of value-added secondary raw materials such as spent Zn/C batteries is crucial to reduce the environmental impact of wastes and to achieve cost-effective and sustainable processing technologies. The aim of this work is to fabricate reduced graphene oxide (rGO)-based sorbents with a desulfurization capability using recycled graphite from spent Zn/C batteries as raw material. Recycled graphite was obtained from a black mass recovered from the dismantling of spent batteries by a hydrometallurgical process. Graphene oxide (GO) obtained by the Tour's method was comparable to that obtained from pure graphite. rGO-based sorbents were prepared by doping obtained GO with NiO and ZnO precursors by a hydrothermal route with a final annealing step. Recycled graphite along with the obtained GO, intermediate (rGO-NiO-ZnO) and final composites (rGO-NiO-ZnO-400) were characterized by Wavelength Dispersive X-ray Fluorescence (WDXRF) and X-ray diffraction (XRD) that corroborated the removal of metal impurities from the starting material as well as the presence of NiO- and ZnO-doped reduced graphene oxide. The performance of the prepared composites was evaluated by sulfidation tests under different conditions. The results revealed that the proposed rGO-NiO-ZnO composite present a desulfurization capability similar to that of commercial sorbents which constitutes a competitive alternative to syngas cleaning.

3.
Molecules ; 28(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985530

RESUMO

The rapidly growing production and usage of lithium-ion batteries (LIBs) dramatically raises the number of harmful wastes. Consequently, the LIBs waste management processes, taking into account reliability, efficiency, and sustainability criteria, became a hot issue in the context of environmental protection as well as the scarcity of metal resources. In this paper, we propose for the first time a functional material-a magnetorheological fluid (MRF) from the LIBs-based liquid waste containing heavy metal ions. At first, the spent battery waste powder was treated with acid-leaching, where the post-treatment acid-leaching solution (ALS) contained heavy metal ions including cobalt. Then, ALS was used during wet co-precipitation to obtain cobalt-doped superparamagnetic iron oxide nanoparticles (SPIONs) and as an effect, the harmful liquid waste was purified from cobalt. The obtained nanoparticles were characterized with SEM, TEM, XPS, and magnetometry. Subsequently, superparamagnetic nanoparticles sized 15 nm average in diameter and magnetization saturation of about 91 emu g-1 doped with Co were used to prepare the MRF that increases the viscosity by about 300% in the presence of the 100 mT magnetic fields. We propose a facile and cost-effective way to utilize harmful ALS waste and use them in the preparation of superparamagnetic particles to be used in the magnetorheological fluid. This work describes for the first time the second life of the battery waste in the MRF and a facile way to remove the harmful ingredients from the solutions obtained after the acid leaching of LIBs as an effective end-of-life option for hydrometallurgical waste utilization.

4.
Waste Manag Res ; 37(2): 168-175, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30632933

RESUMO

The modern community is dependent on electronic devices such as remote controls, alarm clocks, electric shavers, phones and computers, all of which are powered by household batteries. Alkaline, zinc-carbon (Zn-C), nickel metal hydride, lithium and lithium-ion batteries are the most common types of household energy storage technologies in the primary and secondary battery markets. Primary batteries, especially alkaline and Zn-C batteries, are the main constituents of the collected spent battery stream due to their short lifetimes. In this research, the recycling of main battery components, which are steel shells, zinc (Zn) and manganese oxides, was investigated. Household batteries were collected in Gothenburg, Sweden and mechanically pretreated by a company, Renova AB. The steel shells from spent batteries were industrially separated from the batteries themselves and the battery black mass obtained. A laboratory-scale pyrolysis method was applied to recover the Zn content via carbothermic reduction. First, the carbothermic reaction of the battery black mass was theoretically studied by HSC Chemistry 9.2 software. The effect of the amount of carbon on the Zn recovery was then examined by the designed process at 950°C. The recovery efficiency of Zn from battery black mass was over 99%, and the metal was collected as metallic Zn particles in a submicron particle size range. The pyrolysis residue was composed of mainly MnO2with some minor impurities such as iron and potassium. The suggested recycling process is a promising route not only for the effective extraction of secondary resources, but also for the utilization of recovered products in advanced technology applications.


Assuntos
Fontes de Energia Elétrica , Resíduo Eletrônico , Metais , Reciclagem , Suécia , Zinco
5.
Heliyon ; 10(7): e28145, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560163

RESUMO

Large-scale lithium-ion batteries (LIBs) are overtaking as power sources for electric vehicles and grid-scale energy-storage systems for renewable sources. Accordingly, large amounts of LIBs are expected to be discarded in the near future. Recycling technologies for waste LIBs, particularly for valuable rare metals (Li, Co, and Ni) used in cathode active materials, need to be developed to construct continuous LIB supply chains. Various recovery methodologies, such as pyrometallurgy, hydrometallurgy, and direct recycling, as well as their advantages, disadvantages, and technical features, are briefly introduced. We review the electrochemical performances of these cathode active materials based on recycled rare metals from LIB waste. Moreover, the physicochemical properties and electrochemical performance of the cathode active materials with impurities incorporated during recycling, which have high academic significance, are outlined. In hydrometallurgy-based LIB recycling, the complete removal of impurities in cathode active materials is not realistic for the mass and sustainable production of LIBs; thus, optimal control of the impurity levels is of significance. Meanwhile, the studies on the direct recycling of LIB showed the necessity of almost complete impurity removal and restoration of physicochemical properties in cathode active materials. This review provides a survey of the technological outlook of reusing cathode active materials from waste LIBs.

6.
Emergent Mater ; 6(1): 147-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36597484

RESUMO

Biocides are employed to prevent biodeterioration in waterborne paints. In the present study, we used zinc oxide nanoparticles (obtained from spent alkaline batteries) as biocide for indoor waterborne paint at 1.5% of the total solid content in paint. Two different zinc oxides synthesized from spent alkaline batteries, which showed photocatalyst activity, were employed as an antimicrobial agents. After leaching the anode of alkaline batteries, zinc was precipitated from the leachate liquor by introducing oxalic acid (O-ZnO) or sodium carbonate (C-ZnO). The antimicrobial properties of the prepared oxides were tested against Staphylococcus aureus (bacteria), Chaetomium globosum, and Aspergillus fumigatus (fungi) using agar well diffusion method. C-ZnO inhibited the growth of all the strains studied and presented enhanced activity than O-ZnO. The better performance as antimicrobial agent of C-ZnO compared to O-ZnO was attributed to its lower crystallite size, higher amount of oxygen monovacancies, and to its lower band gap energy. The oxide with the best performance in antimicrobial activity, C-ZnO, was employed for the formulation of waterborne acrylic paints. It was observed that 1.5% C-ZnO improved the antifungal properties and antibacterial properties compared to the control sample.

7.
Materials (Basel) ; 15(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454535

RESUMO

The zinc alkaline battery is one of the most popular sources of portable electrical energy, with more than 300,000 tons being consumed per year. Accordingly, it is critical to recycle its components. In this work, we propose the use of zinc oxide (ZnO) microparticles recovered from worn-out batteries as fillers of epoxy resins. These nanocomposites can be used as protective coatings or pigments and as structural composites with high thermal stability. The addition of ceramic nanofillers, such as ZnO or/and TiO2, could enhance the thermal and mechanical properties, and the hardness and hydrophobicity, of the epoxy resins, depending on several factors. Accordingly, different nanocomposites reinforced with recycled ZnO and commercial ZnO and TiO2 nanoparticles have been manufactured with different nanofiller contents. In addition to the different ceramic oxides, the morphology and size of fillers are different. Recycled ZnO are"desert roses" such as microparticles, commercial ZnO are rectangular parallelepipeds nanoparticles, and commercial TiO2 are smaller spherical nanoparticles. The addition of ceramic fillers produces a small increase of the glass transition temperature (<2%), together with an enhancement of the barrier effect of the epoxy resin, reducing the water diffusion coefficient (<21%), although the maximum water uptake remains constant. The nanocomposite water absorption is fully reversible by subsequent thermal treatment, recovering its initial thermomechanical behavior. The water angle contact (WCA) also increases (~12%) with the presence of ceramic particles, although the highest hydrophobicity (35%) is obtained when the epoxy resin reinforced with recycled flowerlike ZnO microparticles is etched with acid stearic and acetic acid, inducing the corrosion of the ZnO on the surface and therefore the increment of the surface roughness. The presence of desert rose ZnO particles enhances the de lotus effect.

8.
Waste Manag ; 68: 508-517, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28647220

RESUMO

Zinc (Zn) recovery from alkaline and zinc-carbon (Zn-C) battery waste were studied by a laboratory scale pyrolysis process at a reaction temperature of 950°C for 15-60min residence time using 5%H2(g)-N2(g) mixture at 1.0L/min gas flow rate. The effect of different cooling rates on the properties of pyrolysis residue, manganese oxide particles, were also investigated. Morphological and structural characterization of the produced Zn particles were performed. The battery black mass was characterized with respect to the properties and chemical composition of the waste battery particles. The thermodynamics of the pyrolysis process was studied using the HSC Chemistry 5.11 software. A hydrogen reduction reaction of the battery black mass (washed with Milli-Q water) takes place at the chosen temperature and makes it possible to produce fine Zn particles by rapid condensation following the evaporation of Zn from the pyrolysis batch. The amount of Zn that can be separated from the black mass increases by extending the residence time. Recovery of 99.8% of the Zn was achieved at 950°C for 60min residence time using 1.0L/min gas flow rate. The pyrolysis residue contains MnO and Mn2O3 compounds, and the oxidation state of manganese can be controlled by cooling rate and atmosphere. The Zn particles exhibit spherical and hexagonal particle morphology with a particle size varying between 200nm and 3µm. However the particles were formed by aggregation of nanoparticles which are primarily nucleated from the gas phase.


Assuntos
Carbono , Fontes de Energia Elétrica , Zinco , Hidrogênio , Manganês , Reciclagem
9.
Waste Manag ; 51: 157-167, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26547409

RESUMO

Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9µm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature.


Assuntos
Fontes de Energia Elétrica , Incineração , Resíduos Industriais/análise , Compostos de Manganês/análise , Óxidos/análise , Reciclagem/métodos , Óxido de Zinco/análise , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa