Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 242: 120182, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311404

RESUMO

A fundamental problem in lake eutrophication management is that the nutrient-chlorophyll a (Chl a) relationship shows high variability due to diverse influences of for example lake depth, lake trophic status, and latitude. To accommodate the variability induced by spatial heterogeneity, a reliable and general insight into the nutrient-Chl a relationship may be achieved by applying probabilistic methods to analyze data compiled across a broad spatial scale. Here, the roles of two critical factors determining the nutrient-Chl a relationship, lake depth and trophic status, were explored by applying Bayesian networks (BNs) and a Bayesian hierarchical linear regression model (BHM) to a compiled global dataset from 2849 lakes and 25083 observations. We categorized the lakes into three groups (shallow, transitional, and deep) according to mean and maximum depth relative to mixing depth. We found that despite a stronger effect of total phosphorus (TP) and total nitrogen (TN) on Chl a when combined, TP played a dominant role in determining Chl a, regardless of lake depth. However, when the lake was hypereutrophic and/or TP was >40 µg/L, TN had a greater impact on Chl a, especially in shallow lakes. The response curve of Chl a to TP and TN varied with lake depth, with deep lakes having the lowest yield Chl a per unit of nutrient, followed by transitional lakes, while shallow lakes had the highest ratio. Moreover, we found a decrease of TN/TP with increasing Chl a concentrations and lake depth (represented as mixing depth/mean depth). Our established BHM may help estimating lake type and/or lake-specific acceptable TN and TP concentrations that comply with target Chl a concentrations with higher certainty than can be obtained when bulking all lake types.


Assuntos
Clorofila , Lagos , Clorofila A , Clorofila/análise , Teorema de Bayes , Monitoramento Ambiental/métodos , Nutrientes , Fósforo/análise , Eutrofização , Nitrogênio/análise , China
2.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36803992

RESUMO

Background: There is no generally accepted methodology for in vivo assessment of antiviral activity in SARS-CoV-2 infections. Ivermectin has been recommended widely as a treatment of COVID-19, but whether it has clinically significant antiviral activity in vivo is uncertain. Methods: In a multicentre open label, randomized, controlled adaptive platform trial, adult patients with early symptomatic COVID-19 were randomized to one of six treatment arms including high-dose oral ivermectin (600 µg/kg daily for 7 days), the monoclonal antibodies casirivimab and imdevimab (600 mg/600 mg), and no study drug. The primary outcome was the comparison of viral clearance rates in the modified intention-to-treat population. This was derived from daily log10 viral densities in standardized duplicate oropharyngeal swab eluates. This ongoing trial is registered at https://clinicaltrials.gov/ (NCT05041907). Results: Randomization to the ivermectin arm was stopped after enrolling 205 patients into all arms, as the prespecified futility threshold was reached. Following ivermectin, the mean estimated rate of SARS-CoV-2 viral clearance was 9.1% slower (95% confidence interval [CI] -27.2% to +11.8%; n=45) than in the no drug arm (n=41), whereas in a preliminary analysis of the casirivimab/imdevimab arm it was 52.3% faster (95% CI +7.0% to +115.1%; n=10 (Delta variant) vs. n=41). Conclusions: High-dose ivermectin did not have measurable antiviral activity in early symptomatic COVID-19. Pharmacometric evaluation of viral clearance rate from frequent serial oropharyngeal qPCR viral density estimates is a highly efficient and well-tolerated method of assessing SARS-CoV-2 antiviral therapeutics in vitro. Funding: 'Finding treatments for COVID-19: A phase 2 multi-centre adaptive platform trial to assess antiviral pharmacodynamics in early symptomatic COVID-19 (PLAT-COV)' is supported by the Wellcome Trust Grant ref: 223195/Z/21/Z through the COVID-19 Therapeutics Accelerator. Clinical trial number: NCT05041907.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Ivermectina/uso terapêutico , Antivirais/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa