Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Biol Chem ; 299(11): 105264, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734557

RESUMO

Hybrid insulin peptides (HIPs) form in beta-cells when insulin fragments link to other peptides through a peptide bond. HIPs contain nongenomic amino acid sequences and have been identified as targets for autoreactive T cells in type 1 diabetes. A subgroup of HIPs, in which N-terminal amine groups of various peptides are linked to aspartic acid residues of insulin C-peptide, was detected through mass spectrometry in pancreatic islets. Here, we investigate a novel mechanism that leads to the formation of these HIPs in human and murine islets. Our research herein shows that these HIPs form spontaneously in beta-cells through a mechanism involving an aspartic anhydride intermediate. This mechanism leads to the formation of a regular HIP containing a standard peptide bond as well as a HIP-isomer containing an isopeptide bond by linkage to the carboxylic acid side chain of the aspartic acid residue. We used mass spectrometric analyses to confirm the presence of both HIP isomers in islets, thereby validating the occurrence of this novel reaction mechanism in beta-cells. The spontaneous formation of new peptide bonds within cells may lead to the development of neoepitopes that contribute to the pathogenesis of type 1 diabetes as well as other autoimmune diseases.


Assuntos
Células Secretoras de Insulina , Insulina , Peptídeos , Animais , Humanos , Camundongos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Técnicas In Vitro , Espectrometria de Massas
2.
J Biol Chem ; 297(1): 100839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051232

RESUMO

Glucose-mediated signaling regulates the expression of a limited number of genes in human pancreatic ß-cells at the transcriptional level. However, it is unclear whether glucose plays a role in posttranscriptional RNA processing or translational control of gene expression. Here, we asked whether glucose affects posttranscriptional steps and regulates protein synthesis in human ß-cell lines. We first showed the involvement of the mTOR pathway in glucose-related signaling. We also used the surface sensing of translation technique, based on puromycin incorporation into newly translated proteins, to demonstrate that glucose treatment increased protein translation. Among the list of glucose-induced proteins, we identified the proconvertase PCSK1, an enzyme involved in the proteolytic conversion of proinsulin to insulin, whose translation was induced within minutes following glucose treatment. We finally performed global proteomic analysis by mass spectrometry to characterize newly translated proteins upon glucose treatment. We found enrichment in proteins involved in translation, glycolysis, TCA metabolism, and insulin secretion. Taken together, our study demonstrates that, although glucose minorly affects gene transcription in human ß-cells, it plays a major role at the translational level.


Assuntos
Metabolismo Energético/genética , Glucose/farmacologia , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Biossíntese de Proteínas/genética , Linhagem Celular , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pró-Proteína Convertase 1/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Puromicina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
3.
Am J Physiol Endocrinol Metab ; 321(4): E479-E489, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229444

RESUMO

When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their ß-cell dysfunction. In this work, we aimed to test the impact of ß-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in ß-cell fractional area or markers of ß-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to ß-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating ß-cell-specific knockouts.


Assuntos
Glicemia/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/patologia , Insulina/metabolismo , Receptores de Prostaglandina E Subtipo EP3/fisiologia , Animais , Feminino , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Ratos
4.
J Biol Chem ; 293(52): 20295-20306, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30397183

RESUMO

Although it is well-established how nutrients, growth factors, and hormones impact functional ß-cell mass (BCM), the influence of the central nervous system in this regard, and especially in the context of islet immune modulation, has been understudied. Here we investigated the expression and activity of pancreatic islet α7 nicotinic acetylcholine receptor (α7nAChR) in islet anti-inflammatory and prosurvival signaling. Systemic administration of α7nAChR agonists in mice improved glucose tolerance and curtailed streptozotocin-induced hyperglycemia by retaining BCM, in part through maintaining Pdx1 and MafA expression and reducing apoptosis. α7nAChR activation of mouse islets ex vivo led to reduced inflammatory drive through a JAK2-STAT3 pathway that couples with CREB/Irs2/Akt survival signaling. Because the vagus nerve conveys anti-inflammatory signals to immune cells of the spleen and other nonneural tissues in the viscera by activating α7nAChR agonists, our study suggests a novel role for ß-cell α7nAChR that functions to maintain ß-cell survival and mass homeostasis through modulating islet cytokine and phosphatidylinositol 3-kinase-dependent signaling pathways. Exploiting these pathways may have therapeutic potential for the treatment of autoimmune diabetes.


Assuntos
Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Hiperglicemia/patologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estreptozocina/toxicidade , Receptor Nicotínico de Acetilcolina alfa7/genética
5.
J Biol Chem ; 293(10): 3524-3534, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29348175

RESUMO

Insulin mRNA expression in pancreatic islet ß-cells is up-regulated by extracellular glucose concentration, but the underlying mechanism remains incompletely understood. MafA is a transcriptional activator specifically enriched in ß-cells that binds to the insulin gene promoter. Its expression is transcriptionally and posttranscriptionally regulated by glucose. Moreover, AMP-activated protein kinase (AMPK), a regulator of cellular energy homeostasis, is inhibited by high glucose, and this inhibition is essential for the up-regulation of insulin gene expression and glucose-stimulated insulin secretion (GSIS). Here we mutagenized the insulin promoter and found that the MafA-binding element C1/RIPE3b is required for glucose- or AMPK-induced alterations in insulin gene promoter activity. Under high-glucose conditions, pharmacological activation of AMPK in isolated mouse islets or MIN6 cells by metformin or 5-aminoimidazole-4-carboxamide riboside decreased MafA protein levels and mRNA expression of insulin and GSIS-related genes (i.e. glut2 and sur1). Overexpression of constitutively active AMPK also reduced MafA and insulin expression. Conversely, pharmacological AMPK inhibition by dorsomorphin (compound C) or expression of a dominant-negative form of AMPK increased MafA and insulin expression under low-glucose conditions. However, AMPK activation or inhibition did not change the expression levels of the ß-cell-enriched transcription factors Pdx1 and Beta2/NeuroD1. AMPK activation accelerated MafA protein degradation, which is not dependent on the proteasome. We also noted that MafA overexpression prevents metformin-induced decreases in insulin and GSIS-related gene expression. These findings indicate that high glucose concentrations inhibit AMPK, thereby increasing MafA protein levels and activating the insulin promoter.

6.
J Biol Chem ; 291(41): 21485-21495, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27535223

RESUMO

The insulin/insulin-like growth factor (IGF) signaling pathway plays a critical role in the regulation of islet cell biology. However, the signaling pathway(s) utilized by insulin to directly modulate ß-cells is unclear. To interrogate whether insulin exerts endocrine effects in regulating proteins in the insulin/IGF-1 signaling cascade in vivo in physiological states via the insulin receptor, we designed two experimental approaches: 1) glucose gavage and 2) hyperinsulinemic intravenous infusion, for studies in either ß-cell specific insulin receptor knock-out (ßIRKO) or control mice. Immunostaining of sections of pancreas (collected immediately after glucose gavage or insulin infusion) from controls showed significant increases in pAKT+, p-p70S6K+, and pERK+ ß-cells and a significant decrease in % nuclear FoxO1+ ß-cells compared with corresponding vehicle-treated groups. In contrast, in ßIRKOs, we observed no significant changes in pAKT+ or p-p70S6K+ ß-cells in either experiment; however, pERK+ ß-cells were significantly increased, and an attenuated decrease in % nuclear FoxO1+ ß cells was evident in response to glucose gavage or insulin infusion. Treatment of control and ßIRKO ß-cell lines with glucose or insulin showed significantly decreased % nuclear FoxO1+ ß-cells suggesting direct effects. Furthermore, blocking MAPK signaling had virtually no effect on FoxO1 nuclear export in controls, in contrast to attenuated export in ßIRKO ß-cells. These data suggest insulin acts on ß-cells in an endocrine manner in the normal situation; and that in ß-cells lacking insulin receptors, insulin and glucose minimally activate the Akt pathway, while ERK phosphorylation and FoxO1 nuclear export occur independently of insulin signaling.


Assuntos
Proteína Forkhead Box O1/metabolismo , Células Secretoras de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Proteína Forkhead Box O1/genética , Glucose/genética , Glucose/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de Insulina/genética
7.
J Biol Chem ; 291(26): 13529-34, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27137932

RESUMO

Diabetes develops in Pdx1-haploinsufficient mice due to an increase in ß-cell death leading to reduced ß-cell mass and decreased insulin secretion. Knockdown of Pdx1 gene expression in mouse MIN6 insulinoma cells induced apoptotic cell death with an increase in Bax activation and knockdown of Bax reduced apoptotic ß-cell death. In Pdx1 haploinsufficient mice, Bax ablation in ß-cells increased ß-cell mass, decreased the number of TUNEL positive cells and improved glucose tolerance after glucose challenge. These changes were not observed with Bak ablation in Pdx1-haploinsufficient mice. These results suggest that Bax mediates ß-cell apoptosis in Pdx1-deficient diabetes.


Assuntos
Apoptose , Diabetes Mellitus Experimental/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Transativadores/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Linhagem Celular Tumoral , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Proteínas de Homeodomínio/genética , Camundongos , Transativadores/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
8.
J Biol Chem ; 291(9): 4614-25, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26740620

RESUMO

The expansion of cells for regenerative therapy will require the genetic dissection of complex regulatory mechanisms governing the proliferation of non-transformed human cells. Here, we report the development of a high-throughput RNAi screening strategy specifically for use in primary cells and demonstrate that silencing the cell cycle-dependent kinase inhibitors CDKN2C/p18 or CDKN1A/p21 facilitates cell cycle entry of quiescent adult human pancreatic beta cells. This work identifies p18 and p21 as novel targets for promoting proliferation of human beta cells and demonstrates the promise of functional genetic screens for dissecting therapeutically relevant state changes in primary human cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Secretoras de Insulina/metabolismo , Adolescente , Adulto , Idoso , Alberta , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p18/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Estudos de Viabilidade , Feminino , Genômica/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células Secretoras de Insulina/citologia , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Projetos Piloto , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Doadores de Tecidos , Adulto Jovem
9.
J Biol Chem ; 290(26): 16191-201, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25934392

RESUMO

Hyperinsulinemia (HI) is elevated plasma insulin at basal glucose. Impaired glucose tolerance is associated with HI, although the exact cause and effect relationship remains poorly defined. We tested the hypothesis that HI can result from an intrinsic response of the ß-cell to chronic exposure to excess nutrients, involving a shift in the concentration dependence of glucose-stimulated insulin secretion. INS-1 (832/13) cells were cultured in either a physiological (4 mm) or high (11 mm) glucose concentration with or without concomitant exposure to oleate. Isolated rat islets were also cultured with or without oleate. A clear hypersensitivity to submaximal glucose concentrations was evident in INS-1 cells cultured in excess nutrients such that the 25% of maximal (S0.25) glucose-stimulated insulin secretion was significantly reduced in cells cultured in 11 mm glucose (S0.25 = 3.5 mm) and 4 mm glucose with oleate (S0.25 = 4.5 mm) compared with 4 mm glucose alone (S0.25 = 5.7 mm). The magnitude of the left shift was linearly correlated with intracellular lipid stores in INS-1 cells (r(2) = 0.97). We observed no significant differences in the dose responses for glucose stimulation of respiration, NAD(P)H autofluorescence, or Ca(2+) responses between left- and right-shifted ß-cells. However, a left shift in the sensitivity of exocytosis to Ca(2+) was documented in permeabilized INS-1 cells cultured in 11 versus 4 mm glucose (S0.25 = 1.1 and 1.7 µm, respectively). Our results suggest that the sensitivity of exocytosis to triggering is modulated by a lipid component, the levels of which are influenced by the culture nutrient environment.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Exocitose , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Biol Chem ; 290(27): 16607-18, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25995453

RESUMO

SET7/9 is an enzyme that methylates histone 3 at lysine 4 (H3K4) to maintain euchromatin architecture. Although SET7/9 is enriched in islets and contributes to the transactivation of ß cell-specific genes, including Ins1 and Slc2a, SET7/9 has also been reported to bind the p65 subunit of nuclear factor κB in non-ß cells and modify its transcriptional activity. Given that inflammation is a central component of ß cell dysfunction in Type 1 and Type 2 diabetes, the aim of this study was to elucidate the role of SET7/9 in proinflammatory cytokine signaling in ß cells. To induce inflammation, ßTC3 insulinoma cells were treated with IL-1ß, TNF-α, and IFN-γ. Cytokine treatment led to increased expression of inducible nitric-oxide synthase, which was attenuated by the diminution of SET7/9 using RNA interference. Consistent with previous reports, SET7/9 was co-immunoprecipitated with p65 and underwent cytosolic to nuclear translocation in response to cytokines. ChIP analysis demonstrated augmented H3K4 mono- and dimethylation of the proximal Nos2 promoter with cytokine exposure. SET7/9 was found to occupy this same region, whereas SET7/9 knockdown attenuated cytokine-induced histone methylation of the Nos2 gene. To test this relationship further, islets were isolated from SET7/9-deficient and wild-type mice and treated with IL-1ß, TNF-α, and IFN-γ. Cytokine-induced Nos2 expression was reduced in the islets from SET7/9 knock-out mice. Together, our findings suggest that SET7/9 contributes to Nos2 transcription and proinflammatory cytokine signaling in the pancreatic ß cell through activating histone modifications.


Assuntos
Histonas/química , Histonas/metabolismo , Ilhotas Pancreáticas/enzimologia , Lisina/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Proteínas Metiltransferases/metabolismo , Animais , Apoptose , Histona-Lisina N-Metiltransferase , Histonas/genética , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Ilhotas Pancreáticas/metabolismo , Lisina/química , Lisina/genética , Metilação , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Metiltransferases/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
J Biol Chem ; 289(52): 36275-83, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25391656

RESUMO

Small noncoding microRNAs have emerged as important regulators of cellular processes, but their role in pancreatic beta cells has only started to be elucidated. Loss of pancreatic beta cells is a key factor in the pathogenesis of diabetes, and we have demonstrated that beta cell expression of thioredoxin-interacting protein (TXNIP) is increased in diabetes and causes beta cell apoptosis, whereas TXNIP deficiency is protective against diabetes. Recently, we found that TXNIP also impairs beta cell function by inducing microRNA (miR)-204. Interestingly, using INS-1 beta cells and primary islets, we have now discovered that expression of another microRNA, miR-200, is induced by TXNIP and by diabetes. Furthermore, we found that miR-200 targeted and decreased Zeb1 (zinc finger E-box-binding homeobox 1) and promoted beta cell apoptosis as measured by cleaved caspase-3 levels, Bax/Bcl2 ratio, and TUNEL. In addition, Zeb1 knockdown mimicked the miR-200 effects on beta cell apoptosis, suggesting that Zeb1 plays an important role in mediating miR-200 effects. Moreover, miR-200 increased beta cell expression of the epithelial marker E-cadherin, consistent with inhibition of epithelial-mesenchymal transition, a process thought to be involved in beta cell expansion. Thus, we have identified a novel TXNIP/miR-200/Zeb1/E-cadherin signaling pathway that, for the first time, links miR-200 to beta cell apoptosis and diabetes and also beta cell TXNIP to epithelial-mesenchymal transition. In addition, our results shed new light on the regulation and function of miR-200 in beta cells and show that TXNIP-induced microRNAs control various processes of beta cell biology.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/fisiologia , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Sequência de Bases , Sítios de Ligação , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Diabetes Mellitus/metabolismo , Humanos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/biossíntese , Dados de Sequência Molecular , Ratos , Transdução de Sinais , Ativação Transcricional , Homeobox 1 de Ligação a E-box em Dedo de Zinco
12.
Virol Sin ; 39(4): 667-674, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950863

RESUMO

The association between chronic HCV infection and type 2 diabetes mellitus (T2DM) has been established; however, there is limited research on ß-cell function particularly in the pre-diabetic population. Here, we evaluated indices of ß-cell function and insulin sensitivity across the spectrum from normal glucose tolerance to T2DM in individuals with and without chronic hepatitis C (CHC), and the effects of antiviral treatments on these variables. A total of 153 non-cirrhotic, non-fibrotic CHC patients with a BMI <25 were enrolled in the study. Among them, 119 were successfully treated with either direct acting antiviral (DAA) drugs or pegylated interferon/ribavirin (IFN/RBV) anti-HCV therapy. Fasting state- and oral glucose tolerance test (OGTT)-derived indexes were used to evaluate ß-cell function and insulin sensitivity. Among all subjects, 19 (13%) had T2DM and 21% exhibited pre-diabetes including 8% isolated impaired fasting glucose (IFG) and 13% combined IFG and impaired glucose tolerance (IGT). Early and total insulin secretion adjusted for the degree of insulin resistance were decreased in pre-diabetic CHC patients compared to HCV-uninfected individuals. Viral eradication through DAA or IFN/RBV therapy demonstrated positive impacts on insulin sensitivity and ß-cell function in CHC patients who achieved sustained virologic response (SVR), regardless of fasting or OGTT state. These findings emphasize the role of HCV in the development of ß-cell dysfunction, while also suggesting that viral eradication can improve insulin secretion, reverse insulin resistance, and ameliorate glycemic control. These results have important implications for managing pre-diabetic CHC patients and could prevent diabetes-related clinical manifestations and complications.


Assuntos
Antivirais , Diabetes Mellitus Tipo 2 , Teste de Tolerância a Glucose , Hepatite C Crônica , Resistência à Insulina , Células Secretoras de Insulina , Ribavirina , Humanos , Masculino , Feminino , Antivirais/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/virologia , Pessoa de Meia-Idade , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Hepatite C Crônica/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Adulto , Ribavirina/uso terapêutico , Glicemia/análise , Resposta Viral Sustentada , Idoso , Insulina/uso terapêutico , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/virologia
13.
Front Endocrinol (Lausanne) ; 14: 1226615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842306

RESUMO

Background: Diabetes mellitus is characterized by chronic hyperglycemia with loss of ß-cell function and mass. An attractive therapeutic approach to treat patients with diabetes in a non-invasive way is to harness the innate regenerative potential of the pancreas. The Islet Neogenesis-Associated Protein pentadecapeptide (INGAP-PP) has been shown to induce ß-cell regeneration and improve their function in rodents. To investigate its possible mechanism of action, we report here the global transcriptional effects induced by the short-term INGAP-PP in vitro treatment of adult rat pancreatic islets. Methods and findings: Rat pancreatic islets were cultured in vitro in the presence of INGAP-PP for 4 days, and RNA-seq was generated from triplicate treated and control islet samples. We performed a de novo rat gene annotation based on the alignment of RNA-seq reads. The list of INGAP-PP-regulated genes was integrated with epigenomic data. Using the new gene annotation generated in this work, we quantified RNA-seq data profiled in INS-1 cells treated with IL1ß, IL1ß+Calcipotriol (a vitamin D agonist) or vehicle, and single-cell RNA-seq data profiled in rat pancreatic islets. We found 1,669 differentially expressed genes by INGAP-PP treatment, including dozens of previously unannotated rat transcripts. Genes differentially expressed by the INGAP-PP treatment included a subset of upregulated transcripts that are associated with vitamin D receptor activation. Supported by epigenomic and single-cell RNA-seq data, we identified 9 previously unannotated long noncoding RNAs (lncRNAs) upregulated by INGAP-PP, some of which are also differentially regulated by IL1ß and vitamin D in ß-cells. These include Ri-lnc1, which is enriched in mature ß-cells. Conclusions: Our results reveal the transcriptional program that could explain the enhancement of INGAP-PP-mediated physiological effects on ß-cell mass and function. We identified novel lncRNAs that are induced by INGAP-PP in rat islets, some of which are selectively expressed in pancreatic ß-cells and downregulated by IL1ß treatment of INS-1 cells. Our results suggest a relevant function for Ri-lnc1 in ß-cells. These findings are expected to provide the basis for a deeper understanding of islet translational results from rodents to humans, with the ultimate goal of designing new therapies for people with diabetes.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , RNA Longo não Codificante , Ratos , Humanos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptídeos/metabolismo , Diabetes Mellitus/metabolismo , Vitamina D/metabolismo
14.
Front Endocrinol (Lausanne) ; 13: 1004136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213262

RESUMO

Primary cilia are slender cell-surface organelles that project into the intercellular space. In pancreatic beta cells, primary cilia coordinate a variety of cell responses including GPCR signaling, calcium influx, and insulin secretion, along with likely many underappreciated roles in islet development and differentiation. To study cilia function in islet biology, direct visualization of primary cilia by microscopic methods is often a necessary first step. Ciliary abundance, distribution, and morphology are heterogeneous among islet cells and are best visualized by fluorescence microscopy, the tools for which are readily accessible to most researchers. Here we present a collection of fluorescence imaging methods that we have adopted and optimized for the observation of primary cilia in mouse and human islets. These include conventional confocal microscopy using fixed islets and pancreas sections, live-cell imaging with cilia-targeted biosensors and probes, cilia motion recordings, and quantitative analysis of primary cilia waveform in the ex vivo environment. We discuss practical considerations and limitations of our approaches as well as new tools on the horizon to facilitate the observation of primary cilia in pancreatic islets.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Cílios/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/diagnóstico por imagem , Camundongos , Imagem Óptica
15.
Front Bioeng Biotechnol ; 10: 904519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769100

RESUMO

Diabetes mellitus (DM) is one of the most prevalent feline endocrinopathies, affecting up to 1% of pet cats. De novo generation of functional insulin producing cell (IPC) clusters via transdifferentiation of feline adipose-derived multipotent stromal cells (ASCs) may not only provide a viable, functional cell therapy for feline DM, but may also serve as a platform for developing a comparable human treatment given feline and human DM similarities. Cells were induced to form IPCs with a novel, three-stage culture process with stromal or differentiation medium under static and dynamic conditions. Clusters were evaluated for intracellular zinc, viability, intracellular insulin, glucagon, and somatostatin, ultrastructure, glucose stimulated insulin secretion in the presence or absence of theophylline, and protein and gene expression. Isolated cells were multipotent, and cell clusters cultured in both media had robust cell viability. Those cultured in differentiation medium contained zinc and mono- or polyhormonal α-, ß-, and δ-like cells based on immunohistochemical labeling and Mallory-Heidenhan Azan-Gomori's staining. Ultrastructurally, cell clusters cultured in differentiation medium contained insulin granules within vesicles, and clusters had a concentration-dependent insulin response to glucose in the presence and absence of theophylline which increased both insulin secretion and intracellular content. Expression of NK6.1, Pax6, Isl1, Glut2, RAB3A, glucagon, insulin, and somatostatin increased with differentiation stage for both sexes, and expression of nestin at stages 1 and 2 and Neurod1 at stage 2 was higher in cells from female donors. The cluster insulin secretion responses and endocrine and oncogene gene expression profiles were inconsistent with insulinoma characteristics. A total of 180 proteins were upregulated in differentiated clusters, and the majority were associated with biological regulation, metabolic processes, or stimulus response. Dynamic culture of IPC clusters resulted in clusters composed of cells primarily expressing insulin that released higher insulin with glucose stimulation than those in static culture. Collectively, the results of this study support generation of functional IPC clusters using feline ASCs isolated from tissues removed during routine sterilization. Further, cluster functionality is enhanced with dynamic, motion-driven shear stress. This work establishes a foundation for development of strategies for IPC therapy for short or long-term diabetes treatment and may represent an option to study prevention and treatment of diabetes across species.

16.
Acta Histochem ; 124(1): 151820, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871948

RESUMO

L-Methionine (L-Met) is an essential sulphur-containing amino acid having a vital role in various key cellular processes. Here we investigated the effect of L-Met on streptozotocin-induced ß-cell damage model of diabetes mellitus in Sprague Dawley rats. At the end of study biochemical parameters, immunoblotting, qRT-PCR and ChIP-qPCR are performed. L-Met was administered orally (250 and 500 mg/kg/day) to diabetic animals for 8 weeks improved plasma glucose and insulin levels. Pancreas immunohistochemistry showed significant increase in insulin expression, decrease in glucagon and Bax expression. Interestingly, L-Met inhibited the expression of Arx; upregulated MafA and FOXO1 which play a critical role in the maintenance of ß-cell identity. Our data also showed a decrease in H3K27me3 and an increase in H3K4me3 ("bivalent domain" alteration) in diabetic rats and these recovered by L-Met. Furthermore, the chromatin-immunoprecipitation assay showed a decreased enrichment of H3K27me3 on the promoter of the FOXO1 gene in diabetic rats and L-Met prevents this decrease. Our results showed the first evidence of the involvement of H3K27me3 in regulating the expression of the FOXO1 gene and the prevention of ß-cell injury by L-Met treatment. In conclusion, we report the involvement of L-Met in the modulation of α-cell identity marker (Arx), ß-cell identity marker (MafA) and regulation of FOXO1 by histone methylation marks for the first time. We are of the opinion that this employed as a novel therapeutic approach for mitigating diabetes-induced ß-cell death.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagon , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Lectinas Tipo C , Glicoproteínas de Membrana , Metionina , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
17.
J Nutr Biochem ; 106: 109013, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35447320

RESUMO

Elevated plasma concentrations of saturated free fatty acids (SFAs) are involved in pancreatic ß-cell dysfunction and apoptosis, referred to as lipotoxicity. However, in contrast to apoptosis, the involvement of ferroptosis, as a distinct type of oxidative regulated cell death in ß-cell lipotoxicity remains elusive. Therefore, the aim of this study was to determine the effects of various free fatty acids on ferroptosis induction in rat insulin-producing ß-cells. Herein, rat insulin-producing ß-cells underwent lipid peroxidation in the presence of long-chain SFAs and ω-6-polyunsaturated fatty acids (PUFAs), but only the latter induced ferroptosis. On the other hand, the ω-3-PUFA α-linolenate did not induce ferroptosis but sensitized insulin-producing ß-cells to SFA-mediated lipid peroxidation. While the monounsaturated fatty acid oleate, overexpression of glutathione peroxidase 4, and the specific ferroptosis inhibitor ferrostatin-1 significantly abrogated lipid peroxidation, neither glutathione peroxidase 4 nor ferrostatin-1 affected palmitate-mediated toxicity. Site-specific expression of catalase in cytosol, mitochondria, and ER attenuated lipid peroxidation, indicating the contribution of metabolically generated H2O2 from all three subcellular compartments. These observations suggest that only ω-6-PUFAs reach the thresholds of lipid peroxidation required for ferroptosis, whereas SFAs favour apoptosis in ß-cells. Hence, avoiding an excessive dietary intake of ω-6-PUFAs might be a crucial prerequisite for prevention of reactive oxygen species-mediated ferroptosis in insulin-producing cells.


Assuntos
Ácidos Graxos Ômega-3 , Ferroptose , Insulinas , Animais , Ácidos Graxos/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Peróxido de Hidrogênio , Insulinas/metabolismo , Peroxidação de Lipídeos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos
18.
Front Endocrinol (Lausanne) ; 12: 602620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040578

RESUMO

The pancreas is regarded as consisting of two separate organ systems, the endocrine and exocrine pancreas. While treatment of a disease with either an endocrine or exocrine pathogenesis may affect the function of the entire pancreas, the pancreatic diseases have been treated by clinicians in different medical disciplines, including endocrinologists and gastroenterologists. Islet microcirculation has long been considered to be regulated independently from that of the exocrine pancreas. A new model proposes that pancreatic islet blood flow is integrated with the surrounding exocrine capillary network. This recent model may provide revived or contrasting hypotheses to test, since the pancreatic microcirculation has critical implications for the regulation of islet hormones as well as acinar pancreas functions. In this mini-review, practical applications of in vivo and in situ studies of islet microcirculation are described with a specific emphasis on large-scale data analysis to ensure sufficient sample size accounting for known islet heterogeneity. For in vivo small animal studies, intravital microscopy based on two-photon excitation microscopes is a powerful tool that enables capturing the flow direction and speed of individual fluorescent-labeled red blood cells. Complementarily, for structural analysis of blood vessels, the recent technical advancements of confocal microscopy and tissue clearing have enabled us to image the three-dimensional network structure in thick tissue slices.


Assuntos
Ilhotas Pancreáticas/irrigação sanguínea , Microcirculação/fisiologia , Animais , Técnicas Citológicas , Hemodinâmica/fisiologia , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas/citologia , Modelos Biológicos
19.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166114, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662571

RESUMO

Pro-inflammatory cytokines are crucial mediators of beta-cell destruction in type 1 diabetes mellitus (T1DM). The involvement of ferroptosis as a form of oxidative non-apoptotic cell death in T1DM pathogenesis has not been elucidated so far. Moreover, the role of glutathione peroxidase 4 (GPx4) as an antioxidative enzyme and a major regulator of ferroptosis remains elusive. Assessment of GPx4 expression in different pancreatic islet cell types revealed a predominant expression in beta-cells. Silencing of GPx4 by RNA interference and exposure to tert-butyl hydroperoxide (tert-BHP) caused ferroptosis in rat pancreatic beta-cells as evidenced by non-apoptotic cell death in association with increased lipid peroxidation, disturbed ATP synthesis, reduced GSH content, and GPx4 degradation. GPx4 overexpression as well as the ferroptosis inhibitor ferrostatin-1 effectively attenuated beta-cell death induced by tert-BHP. Notably, beta-cell toxic cytokines did not induce ferroptosis although beta-cells underwent cell death. Inhibition of iNOS by Nω-nitro-L-arginine however led to a massive lipid peroxidation upon exposure to pro-inflammatory cytokines. Hence, nitric oxide produced during pro-inflammatory cytokine action prevents the induction of ferroptosis, thereby favouring apoptosis as a primary cell death mechanism. The extraordinarily high abundance of the phospholipid hydroperoxidase GPx4 in beta-cells in contrast to the very low expression in other islet cell types points to a susceptibility of beta-cells to the accumulation of toxic lipid peroxides. Overall, these data strongly suggest that GPx4 is indispensable for beta-cell function under physiological conditions. On the other hand, our results exclude an involvement of ferroptosis as an alternative beta-cell death mode under pro-inflammatory cytokine attack.


Assuntos
Apoptose , Citocinas/metabolismo , Ferroptose , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/patologia , Peroxidação de Lipídeos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Células Secretoras de Insulina/metabolismo , Masculino , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ratos , Ratos Endogâmicos Lew
20.
Pharmacol Res Perspect ; 9(2): e00736, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33694300

RESUMO

Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the ß-cell dysfunction of the disease. Two-series prostaglandins bind to a family of G-protein-coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence ß-cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat ß-cell-derived line that regulates glucose-stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose-stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well-characterized EP3-specific antagonist, are mediated solely by cross-reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating ß-cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.


Assuntos
Glucose/metabolismo , Secreção de Insulina/fisiologia , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina , Ratos , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa