Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(10): e2305346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875723

RESUMO

The design of dual-mode fluorescence and Raman tags stimulates a growing interest in biomedical imaging and sensing applications as they offer the possibility to synergistically combine the versatility and velocity of fluorescence imaging with the specificity of Raman spectroscopy. Although lanthanide-doped fluoride nanoparticles (NPs) are among the most studied fluorescent nanoprobes, their use for the development of bimodal fluorescent-Raman probes has never been reported yet, to the best of the authors knowledge, probably due to the difficulty to functionalize them with Raman reporter groups. This gap is filled herein by proposing a fast and straightforward approach based on aryl diazonium salt chemistry to functionalize Eu3+ or Tb3+ doped CaF2 and LaF3 NPs by Raman scatters. The resulting surface-enhanced Raman spectroscopy (SERS)-encoded lanthanide-doped fluoride NPs retain their fluorescence labeling capacity and display efficient SERS activity for cell bioimaging. The potential of this new generation of bimodal nanoprobes is assessed through cell viability assays and intracellular fluorescence and Raman imaging, opening up unprecedented opportunities for biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Fluoretos , Sais , Nanopartículas/química , Análise Espectral Raman/métodos , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Ouro/química
2.
Small ; 19(21): e2206441, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36799196

RESUMO

Although photothermal therapy (PTT) can noninvasively kill tumor cells and exert synergistic immunological effects, the immune responses are usually harmed due to the lack of cytotoxic T cells (CTLs) pre-infiltration and co-existing of intricate immunosuppressive tumor microenvironment (TME), including the programmed cell death ligand 1 (PD-L1)/cluster of differentiation 47 (CD47)/regulatory T cells (Tregs)/M2-macrophages overexpression. Indoleamine 2, 3-dioxygenase inhibitor (NLG919) or bromodomain extra-terminal inhibitor (OTX015) holds great promise to reprogram suppressive TME through different pathways, but their collaborative application remains a formidable challenge because of the poor water solubility and low tumor targeting. To address this challenge, a desirable nanomodulator based on dual immune inhibitors loaded mesoporous polydopamine nanoparticles is designed. This nanomodulator exhibits excellent biocompatibility and water solubility, PTT, and bimodal magnetic resonance/photoacoustic imaging abilities. Owing to enhanced permeability and retention effect and tumor acidic pH-responsiveness, both inhibitors are precisely delivered and locally released at tumor sites. Such a nanomodulator significantly reverses the immune suppression of PD-L1/CD47/Tregs, promotes the activation of CTLs, regulates M2-macrophages polarization, and further boosts combined therapeutic efficacy, inducing a strong immunological memory. Taken together, the nanomodulator provides a practical approach for combinational photothermal-immunotherapy, which may be further broadened to other "immune cold" tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Antígeno B7-H1 , Antígeno CD47 , Fototerapia/métodos , Imunoterapia , Neoplasias/terapia , Água , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Mol Pharm ; 20(12): 6262-6271, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37948165

RESUMO

Cancer is one of the greatest threats to human health due to late diagnosis and incomplete resection. The bimodal probe combines positron emission tomography (PET) imaging for noninvasive whole-body scanning with intraoperative near-infrared fluorescence (NIRF) surgical guidance for preoperative tumor detection, tumor resection during surgery, and postoperative monitoring. We developed a new PET/NIRF bimodal imaging agent, [68Ga]Ga-DOTA-NPC, covalently coupled to DCDSTCY and DOTA via ethylenediamine and radiolabeled with gallium-68, and investigated it in vitro and in vivo. The probe was found to be preferential for colon cancer cells due to the organic anion-transporting polypeptide1B3 (OATP1B3). PET/NIRF imaging allowed us to confirm [68Ga]Ga-DOTA-NPC as a promising probe for tumor detection, as it provides good biosafety and high-contrast tumor accumulation. Orthotopic and subcutaneous colon tumors were successfully resected under real-time NIRF guidance. [68Ga]Ga-DOTA-NPC provides highly sensitive and unlimited tissue-penetrating PET/NIRF imaging, helping to visualize and differentiate tumors from adjacent tissue.


Assuntos
Radioisótopos de Gálio , Neoplasias , Humanos , Fluorescência , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/patologia , Compostos Radiofarmacêuticos , Linhagem Celular Tumoral
4.
Angew Chem Int Ed Engl ; 62(10): e202217055, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602292

RESUMO

Tumor-targeted and stimuli-activatable nanosensitizers are highly desirable for cancer theranostics. However, designing smart nanosensitizers with multiple imaging signals and synergistic therapeutic activities switched on is challenging. Herein, we report tumor-targeted and redox-activatable nanosensitizers (1-NPs) for sono-photodynamic immunotherapy of tumors by molecular co-assembly and redox-controlled disassembly. 1-NPs show a high longitudinal relaxivity (r1 =18.7±0.3 mM-1 s-1 ), but "off" dual fluorescence (FL) emission (at 547 and 672 nm), "off" sono-photodynamic therapy and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition activities. Upon reduction by glutathione (GSH), 1-NPs rapidly disassemble and remotely release small molecules 2-Gd, Zn-PPA-SH and NLG919, concurrently switching on (1) dual FL emission, (2) sono-photodynamic therapy and (3) IDO1 inhibition activities. After systemic injection, 1-NPs are effective for bimodal FL and magnetic resonance (MR) imaging-guided sono-photodynamic immunotherapy of orthotropic breast and brain tumors in mice under combined ultrasound (US) and 671-nm laser irradiation.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Fluorescência , Oxirredução , Imunoterapia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/uso terapêutico
5.
Angew Chem Int Ed Engl ; 62(46): e202313137, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37766426

RESUMO

To realize sensing and labeling biomarkers is quite challenging in terms of designing multimodal imaging probes. In this study, we developed a novel ß-galactosidase (ß-gal) activated bimodal imaging probe that combines near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) to enable real-time visualization of activity in living organisms. Upon ß-gal activation, Gal-Cy-Gd-1 exhibits a remarkable 42-fold increase in NIR fluorescence intensity at 717 nm, allowing covalent labeling of adjacent target enzymes or proteins and avoiding molecular escape to promote probe accumulation at the tumor site. This fluorescence reaction enhances the longitudinal relaxivity by approximately 1.9 times, facilitating high-resolution MRI. The unique features of Gal-Cy-Gd-1 enable real-time and precise visualization of ß-gal activity in live tumor cells and mice. The probe's utilization aids in identifying in situ ovarian tumors, offering valuable assistance in the precise removal of tumor tissue during surgical procedures in mice. The fusion of NIR fluorescence and MRI activation through self-immobilizing target enzymes or proteins provides a robust approach for visualizing ß-gal activity. Moreover, this approach sets the groundwork for developing other activatable bimodal probes, allowing real-time in vivo imaging of enzyme activity and localization.


Assuntos
Neoplasias , Camundongos , Animais , Fluorescência , beta-Galactosidase/metabolismo , Corantes Fluorescentes/metabolismo , Imagem Óptica/métodos
6.
Angew Chem Int Ed Engl ; 61(14): e202200369, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35118798

RESUMO

Enzyme-triggered macrocyclization and in situ self-assembly of small molecules into nanoparticles has shown promise to design activatable probes for molecular imaging. However, controlling macrocyclization and self-assembly to concurrently augment positron emission tomography (PET) and photoacoustic (PA) signals for bimodality imaging is challenging. Herein, we report the engineering of a triazole-IR780 fluorophore as a versatile macrocyclization scaffold for controlling in situ self-assembly and design a caspase-3-activatable PA/PET bimodal probe ([18 F]-IR780-1) for in vivo imaging of tumor apoptosis. By leveraging the high-sensitivity whole-body imaging signals offered by PET with the high-resolution imaging signals offered by PA, [18 F]-IR780-1 can provide a promising tool for the early evaluation of antitumor efficacy, helpful for optimizing the therapeutic protocol for patients. This scaffold may be adopted to design other activatable bimodal probes for in vivo imaging.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Corantes Fluorescentes , Humanos , Imagem Molecular , Técnicas Fotoacústicas/métodos , Tomografia por Emissão de Pósitrons/métodos
7.
Bioorg Med Chem Lett ; 34: 127776, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33418064

RESUMO

Estrogen receptor is an attractive target for the diagnosis and treatment of breast cancer. This article reports for the first time a dual-modality imaging agent targeting estrogen receptor that can use PET imaging to diagnose breast cancer and utilize fluorescence imaging to achieve intraoperative navigation. Fluorescence experiments show that [natGa] 1 has typical aggregate induced emission characteristics. Above the critical concentration, [natGa] 1 can form biocompatible nanomicelles. [natGa] 1 can quickly light up estrogen receptor positive MCF-7 cells. Cell uptake experiments show that [68Ga] 1 is mediated by estrogen receptor. Therefore, [nat/68Ga] 1 shows the characteristics of highly sensitive diagnosis and visualization of breast cancer, and can be used as a lead compound for the development of a novel PET-FI bimodal imaging agent targeting the estrogen receptor.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Receptores de Estrogênio/análise , Feminino , Germânio/química , Humanos , Marcação por Isótopo , Células MCF-7 , Conformação Molecular , Imagem Óptica , Compostos Radiofarmacêuticos/síntese química
8.
J Nanobiotechnology ; 19(1): 80, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743720

RESUMO

BACKGROUND: The recently developed biomimetic strategy is one of the mostly effective strategies for improving the theranostic efficacy of diverse nanomedicines, because nanoparticles coated with cell membranes can disguise as "self", evade the surveillance of the immune system, and accumulate to the tumor sites actively. RESULTS: Herein, we utilized mesenchymal stem cell memabranes (MSCs) to coat polymethacrylic acid (PMAA) nanoparticles loaded with Fe(III) and cypate-an derivative of indocyanine green to fabricate Cyp-PMAA-Fe@MSCs, which featured high stability, desirable tumor-accumulation and intriguing photothermal conversion efficiency both in vitro and in vivo for the treatment of lung cancer. After intravenous administration of Cyp-PMAA-Fe@MSCs and Cyp-PMAA-Fe@RBCs (RBCs, red blood cell membranes) separately into tumor-bearing mice, the fluorescence signal in the MSCs group was 21% stronger than that in the RBCs group at the tumor sites in an in vivo fluorescence imaging system. Correspondingly, the T1-weighted magnetic resonance imaging (MRI) signal at the tumor site decreased 30% after intravenous injection of Cyp-PMAA-Fe@MSCs. Importantly, the constructed Cyp-PMAA-Fe@MSCs exhibited strong photothermal hyperthermia effect both in vitro and in vivo when exposed to 808 nm laser irradiation, thus it could be used for photothermal therapy. Furthermore, tumors on mice treated with phototermal therapy and radiotherapy shrank 32% more than those treated with only radiotherapy. CONCLUSIONS: These results proved that Cyp-PMAA-Fe@MSCs could realize fluorescence/MRI bimodal imaging, while be used in phototermal-therapy-enhanced radiotherapy, providing desirable nanoplatforms for tumor diagnosis and precise treatment of non-small cell lung cancer.


Assuntos
Biomimética/métodos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Nanomedicina/métodos , Terapia Fototérmica/métodos , Ácidos Polimetacrílicos/química , Animais , Compostos Férricos , Hipertermia Induzida , Verde de Indocianina , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas , Fototerapia/métodos
9.
Beijing Da Xue Xue Bao Yi Xue Ban ; 52(5): 959-963, 2020 Oct 18.
Artigo em Chinês | MEDLINE | ID: mdl-33047737

RESUMO

OBJECTIVE: To improve the methods to synthesize and purify of optical-magnetic bimodal molecular probe of Gd-[4, 7-Bis-carboxymethyl-10-(2-fluorescein thioureaethyl)-1, 4, 7, 10-tetraaza-cyclododec-1-yl]-acetic acid complexes. METHODS: Target compound (7), optical-magnetic bimodal molecular molecular probe, was synthesized by the use of 1, 4, 7, 10-tetraazacyclododecane (1) as starting material via substitution reaction, hydrolysis reaction, coupling reaction and complexation reaction with metal. RESULTS: The synthetic route of Gd-[4, 7-Bis-carboxymethyl-10-(2-fluoresceinthioureaethyl)-1, 4, 7, 10-tetraaza-cyclododec-1-yl]-acetic acid complexes was improved. The optical-magnetic bimodal molecular probes were synthesized by substitution reaction, hydrolysis reaction, coupling reaction and complex reaction with metal respectively. For the improved route, the total yield could reach 34.6% which was higher than the original route (18.0%). The structures of those compounds were identified by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and mass spectrometry. The improved route could avoid the uncontrollable disadvantage of the substitution reaction, this process could reduce the formation of impurities and made the purification process easier, and in the aspect of purification and separation, the preparative high-performance liquid chromatography with less sample loading and high cost was improved to a column chromatography with many sample loads and being easy to operate. Therefore, the use of column chromatography could be more conducive to mass production of the optical-magnetic bimodal molecular molecular probe. CONCLUSION: The improved synthetic route improves the controllability of the reaction conditions and makes it easier to purify and separate the compounds. At the same time, the improved synthetic route can increase the total yield significantly. The optical-magnetic bimodal molecular probe can combine the living magnetic resonance imaging with the in vitro optical imaging to realize the dual synchronous detection of magneto-optics, so that the detection results of the living magnetic resonance imaging and the in vitro optical imaging are mutually verified. In other words, this synthetic optical-magnetic bimodal molecular probe will make the experimental results more accurate and reliable. In subsequent biological experimental studies, the optical-magnetic bimodal molecular probe can be applied to related research of brain structure and function, and the probe can be used for the brain-related diseases researches, such as brain tumors. after intravenous administration, and thus the optical-magnetic bimodal molecular probe can play an important role in medical treatment of brain tumors and cerebrovascular diseases.


Assuntos
Ácido Acético , Imageamento por Ressonância Magnética , Encéfalo , Espectroscopia de Ressonância Magnética , Sondas Moleculares
10.
Nanomedicine ; 22: 102082, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31404651

RESUMO

Due to the wealth of actors involved in the development of atherosclerosis, molecular imaging based on the targeting of specific markers would substantiate the diagnosis of life-threatening atheroma plaques. To this end, TEG4 antibody is a promising candidate targeting the activated platelets (integrin αIIbß3) highly represented within the plaque. In this study, scFv antibody fragments were used to functionalize multimodal imaging nanoparticles. This grafting was performed in a regio-selective way to preserve TEG4 activity and the avidity of the nanoparticles was studied with respect to the number of grafted antibodies. Subsequently, taking advantage of the nanoparticle bimodality, both near infrared fluorescence and magnetic resonance imaging of the atheroma plaque were performed in the ApoE-/- mouse model. Here we describe the design of the targeted nanoparticles, and a quantification method for their detection in mice, both ex vivo and in vivo, highlighting their value as a potential diagnosis agent.


Assuntos
Aterosclerose/diagnóstico , Imagem Molecular , Imagem Multimodal , Nanopartículas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Aterosclerose/patologia , Fluorescência , Imageamento por Ressonância Magnética , Masculino , Camundongos , Coelhos , Distribuição Tecidual
11.
Chemistry ; 20(35): 10915-20, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25069825

RESUMO

Selectively functionalized cyclodextrins with a bodipy fluorescent tag or Gd(3+) complex were synthetized and threaded onto a polyammonium chain to form polyrotaxanes. This modular supramolecular assembly makes an ideal platform for bimodal (fluorescent and MRI) imaging applications.


Assuntos
Complexos de Coordenação/química , Ciclodextrinas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Gadolínio/química , Rotaxanos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares
12.
Chemistry ; 20(12): 3358-64, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24523192

RESUMO

The immense structural diversity of more than 200 known zeolites is the basis for the wide variety of applications of these fascinating materials ranging from catalysis and molecular filtration to agricultural uses. Despite this versatility, the potential of zeolites in medical imaging has not yet been much exploited. In this work a novel strategy is presented to selectively deposit different ions into distinct framework locations of zeolite-LTL (Linde type L) and it is demonstrated that the carefully ion-exchanged Gd/Eu-containing nanocrystals acquire exceptional magnetic properties in combination with enhanced luminescence. This smart exploitation of the framework structure yields the highest relaxivity density (13.7 s(-1) L g(-1) at 60 MHz and 25 °C) reported so far for alumosilicates, rendering these materials promising candidates for the design of dual magnetic resonance/optical imaging probes, as demonstrated in preliminary phantom studies.


Assuntos
Meios de Contraste/química , Európio/química , Gadolínio/química , Nanoestruturas/química , Zeolitas/química , Catálise , Luminescência , Espectroscopia de Ressonância Magnética
13.
Biomaterials ; 310: 122635, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38810386

RESUMO

Hepatocellular carcinoma (HCC) seriously threatens the human health. Previous investigations revealed that γ-glutamyltranspeptidase (GGT) was tightly associated with the chronic injury, hepatic fibrosis, and the development of HCC, therefore might act as a potential indicator for monitoring the HCC-related processes. Herein, with the contribution of a structurally optimized probe ETYZE-GGT, the bimodal imaging in both far red fluorescence (FL) and photoacoustic (PA) modes has been achieved in multiple HCC-related models. To our knowledge, this work covered the most comprehensive models including the fibrosis and developed HCC processes as well as the premonitory induction stages (autoimmune hepatitis, drug-induced liver injury, non-alcoholic fatty liver disease). ETYZE-GGT exhibited steady and practical monitoring performances on reporting the HCC stages via visualizing the GGT dynamics. The two modes exhibited working consistency and complementarity with high spatial resolution, precise apparatus and desirable biocompatibility. In cooperation with the existing techniques including testing serum indexes and conducting pathological staining, ETYZE-GGT basically realized the universal application for the accurate pre-clinical diagnosis of as many HCC stages as possible. By deeply exploring the mechanically correlation between GGT and the HCC process, especially during the premonitory induction stages, we may further raise the efficacy for the early diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Técnicas Fotoacústicas , gama-Glutamiltransferase , gama-Glutamiltransferase/metabolismo , Animais , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Hepatopatias/diagnóstico por imagem , Imagem Óptica/métodos , Camundongos , Masculino , Camundongos Endogâmicos BALB C , Fígado/patologia , Fígado/diagnóstico por imagem , Fígado/enzimologia , Corantes Fluorescentes/química
14.
Adv Sci (Weinh) ; : e2401182, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051482

RESUMO

Treatment of highly aggressive triple-negative breast cancer (TNBC) in the clinic is challenging. Here, a liposome nanodrug (LP@PFH@HMME) integrating imaging agents and therapeutic agents for bimodal imaging-guided sonodynamic therapy (SDT) is developed, which boosted immunogenicity to enable potent immunotherapy via immune checkpoint blockade (ICB) in TNBC. In the acidic tumor microenvironment (TME), LP@PFH@HMME undergoes "nano-to-micro" transformation due to a pH-responsive lipid fusion, which makes droplets much more sensitive to ultrasound (US) in contrast-enhanced ultrasound (CEUS) and SDT studies. The nanodrug demonstrates robust bimodal imaging ability through fluorine-19 magnetic resonance imaging (19F MRI) and CEUS bimodal imaging, and it exhibits excellent solubility in aqueous solution with relatively high 19F content and desirable long transverse relaxation time (T2 = 1.072 s), making it suitable for high-performance 19F MRI, in addition to effective accumulation of nanodrugs after tail vein injection. Thus, 19F MRI/CEUS dual imaging is achievable to show adequate time points for US irradiation of tumor sites to induce highly effective SDT, which produces abundant reactive oxygen species (ROS) triggering immunogenic cell death (ICD) to assist ICB-based immunotherapy. The combination treatment design of sonodynamic therapy with immunotherapy effectively inhibited TNBC growth and recurrence, highlighting the promise of multifunctional nanodrugs in treating TNBC.

15.
Chemistry ; 19(47): 16019-28, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24123216

RESUMO

Six diethylene triamine pentaacetic acid (DTPA) bisamide derivatives functionalized with p-toluidine (DTPA-BTolA), 6-aminocoumarin (DTPA-BCoumA), 1-naphthalene methylamine (DTPA-BNaphA), 4-ethynylaniline (DTPA-BEthA), p-dodecylaniline (DTPA-BC12PheA) and p-tetradecyl-aniline (DTPA-BC14PheA) were coordinated to dysprosium(III) and the magnetic and optical properties of the complexes were examined in detail. The complexes consisting of amphiphilic ligands (DTPA-BC12PheA and DTPA-BC14PheA) were further assembled into mixed micelles. Upon excitation into the ligand levels, the complexes display characteristic Dy(III) emission with quantum yields of 0.3-0.5% despite the presence of one water molecule in the first coordination sphere. A deeper insight into the energy-transfer processes has been obtained by studying the photophysical properties of the corresponding Gd(III) complexes. Since the luminescence quenching effect is decreased by the intervention of non-ionic surfactant, quantum yields up to 1% are obtained for the micelles. The transverse relaxivity r2 per Dy(III) ion at 500 MHz and 310 K reaches a maximum value of 27.4 s(-1) mM(-1) for Dy-DTPA-BEthA and 36.0 s(-1) mM(-1) for the Dy-DTPA-BC12PheA assemblies compared with a value of 0.8 s(-1) mM(-1) for Dy-DTPA. The efficient T2 relaxation, especially at high magnetic field strengths, is sustained by the high magnetic moment of the dysprosium ion, the coordination of water molecules with slow water exchange kinetics and long rotational correlation times. These findings open the way to the further development of bimodal optical and magnetic resonance imaging probes starting from single lanthanide compounds.

16.
ACS Biomater Sci Eng ; 9(12): 6548-6566, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37945516

RESUMO

Theranostics technology that combines tumor diagnosis or monitoring with therapy is an important direction for the future development of tumor treatment. It takes advantage of efficiently observing tumor tissues, monitoring tumor treatment in real time, and significantly improving the cure efficiency. Magnetic carbon dots (CDs) are of wide interest as molecular imaging probes, drug carriers, photosensitizers, and radiosensitizers in the integration of tumor fluorescence/magnetic resonance bimodal diagnosis and treatment because of their small size, good optical stability, magnetic relaxation rate, and biocompatibility. This review first analyzes and compares the synthesis methods and physicochemical properties of magnetic CDs in recent years and then concludes their mechanism in tumor fluorescence/magnetic resonance bimodal imaging and therapy in details. Subsequently, the research progress of their application in tumor theranostics are summarized. Finally, the problems and challenges of magnetic CDs for development at this stage are prospected. This review provides new ideas for their controlled synthesis and application in efficient and precise therapy for tumors.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Carbono/uso terapêutico , Carbono/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
17.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986500

RESUMO

Tracers for bimodal optical imaging and positron emission tomography unite multiple advantages in a single molecule. Their tumor-specific uptake can be visualized after their PET activation by radiofluorination via PET/CT or PET/MRI allowing for staging or therapy planning, while their non-radioactive moiety additionally facilitates the visualization of malignant tissue during intraoperative fluorescence-guided surgery or in histological assessments. The silicon-bridged xanthene core offers the opportunity for radiofluorination with SiFA isotope exchange to obtain a small-molecule, PET-activatable NIR dye that can be linked to different target vectors. Herein, we demonstrate for the first time the PET-activation of a fluorinated silicon pyronine, belonging to a class of low-molecular-weight fluorescence dyes with a large Stokes shift (up to 129 nm) and solvent-dependent NIR dye properties, with a successful radiochemical conversion of 70%. The non-fluorinated pyronine precursor is easily accessible by a three-step sequence from commercially starting material with a 12% overall yield. Moreover, a library of seven unusually functionalized (by approximately 15 nm), red-shifted silicon rhodamines were synthesized in three- to four-step sequences and the optical properties of the novel dyes were characterized. It was also shown that the synthesized silicon rhodamine dyes can be easily conjugated by amide bond formation or 'click-reaction' approaches.

18.
Front Chem ; 10: 859948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402374

RESUMO

Near-infrared (NIR, 650-1700 nm) bioimaging has emerged as a powerful strategy in tumor diagnosis. In particular, NIR-I fluorescence imaging (650-950 nm) has drawn more attention, benefiting from the high quantum yield and good biocompatibility. Since their biomedical applications are slightly limited by their relatively low penetration depth, NIR-I fluorescence imaging probes have been under extensive development in recent years. This review summarizes the particular application of the NIR-I fluorescent dye-contained bimodal probes, with emphasis on related nanoprobes. These probes have enabled us to overcome the drawbacks of individual imaging modalities as well as achieve synergistic imaging. Meanwhile, the application of these NIR-I fluorescence-based bimodal probes for cancer theranostics is highlighted.

19.
Pharmaceutics ; 14(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36145552

RESUMO

Although there are emerging innovations of molecular imaging probes to detect and image tumors, most of these molecular dyes and nanoparticles have limitations of low targetability in tumors and fast clearance when administered systemically. In contrast, some bacteria, such as Escherichia coli MG1655, can selectively proliferate in a hypoxic environment inside of a tumor for several days, which highlights the potential for the development of a genetically encoded multimodal imaging probe to monitor the progress of the tumor. Here, we developed bimodal imaging tumor-homing bacteria (GVs-miRFP680 MG1655) that allow both optical and acoustic imaging in tumor-bearing mice. An in vivo optical image system and a Vevo 2100 imaging system were applied to detect different imaging properties of the engineered bacteria in vivo. Our results show that the GVs-miRFP680 MG1655 bacteria can effectively integrate the advantages of low tissue absorbance from near-infrared fluorescent proteins and non-invasiveness from gas vesicles. We successfully developed GVs-miRFP680 MG1655 bacteria, which have both acoustic and optical imaging abilities in vitro and in vivo. The acoustic signal can last for up to 25 min, while the near-infrared fluorescence signal can last for up to 96 h. The combination of different imaging modalities in the tumor-homing bacteria may contribute to the non-invasive monitoring of the therapeutic effect of bacterial therapy in the future.

20.
Pharmaceutics ; 14(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631669

RESUMO

Atherosclerosis is the leading cause of global morbidity and mortality. Its therapy requires research in several areas, such as diagnosis of early arteriosclerosis, improvement of the pharmacokinetics and bioavailability of rapamycin as its therapeutic agents. Here, we used the targeting peptide VHPKQHR (VHP) (or fluorescent reagent) to modify the phospholipid molecules to target vascular cell adhesion molecule-1 (VCAM-1) and loaded ultrasmall paramagnetic iron oxide (USPIO/Fe3O4) plus rapamycin (Rap) to Rap/Fe3O4@VHP-Lipo (VHPKQHR-modified magnetic liposomes coated with Rap). This nanoparticle can be used for both the diagnosis and therapy of early atherosclerosis. We designed both an ex vivo system with mouse aortic endothelial cells (MAECs) and an in vivo system with ApoE knockout mice to test the labeling and delivering potential of Rap/Fe3O4@VHP-Lipo with fluorescent microscopy, flow cytometry and MRI. Our results of MRI imaging and fluorescence imaging showed that the T2 relaxation time of the Rap/Fe3O4@VHP-Lipo group was reduced by 2.7 times and 1.5 times, and the fluorescence intensity increased by 3.4 times and 2.5 times, respectively, compared with the normal saline group and the control liposome treatment group. It showed that Rap/Fe3O4@VHP-Lipo realized the diagnosis of early AS. Additionally, our results showed that, compared with the normal saline and control liposomes treatment group, the aortic fluorescence intensity of the Rap/Fe3O4@VHP-Lipo treatment group was significantly weaker, and the T2 relaxation time was prolonged by 8.9 times and 2.0 times, indicating that the targeted diagnostic agent detected the least plaques in the Rap/Fe3O4@VHP-Lipo treatment group. Based on our results, the synthesized theragnostic Rap/Fe3O4@VHP-Lipo serves as a great label for both MRI and fluorescence bimodal imaging of atherosclerosis. It also has therapeutic effects for the early treatment of atherosclerosis, and it has great potential for early diagnosis and can achieve the same level of therapy with a lower dose of Rap.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa