Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Comput ; : 1-41, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713741

RESUMO

Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the "performance gap" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.

2.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336467

RESUMO

This paper deals with the problems and the solutions of fast coverage path planning (CPP) for multiple UAVs. Through this research, the problem is solved and analyzed with both a software framework and algorithm. The implemented algorithm generates a back-and-forth path based on the onboard sensor footprint. In addition, three methods are proposed for the individual path assignment: simple bin packing trajectory planner (SIMPLE-BINPAT); bin packing trajectory planner (BINPAT); and Powell optimized bin packing trajectory planner (POWELL-BINPAT). The three methods use heuristic algorithms, linear sum assignment, and minimization techniques to optimize the planning task. Furthermore, this approach is implemented with applicable software to be easily used by first responders such as police and firefighters. In addition, simulation and real-world experiments were performed using UAVs with RGB and thermal cameras. The results show that POWELL-BINPAT generates optimal UAV paths to complete the entire mission in minimum time. Furthermore, the computation time for the trajectory generation task decreases compared to other techniques in the literature. This research is part of a real project funded by the H2020 FASTER Project, with grant ID: 833507.


Assuntos
Algoritmos , Software , Simulação por Computador
3.
Sensors (Basel) ; 20(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784913

RESUMO

This paper proposes a novel online object-packing system which can measure the dimensions of every incoming object and calculate its desired position in a given container. Existing object-packing systems have the limitations of requiring the exact information of objects in advance or assuming them as boxes. Thus, this paper is mainly focused on the following two points: (1) Real-time calculation of the dimensions and orientation of an object; (2) Online optimization of the object's position in a container. The dimensions and orientation of the object are obtained using an RGB-D sensor when the object is picked by a manipulator and moved over a certain position. The optimal position of the object is calculated by recognizing the container's available space using another RGB-D sensor and minimizing the cost function that is formulated by the available space information and the optimization criteria inspired by the way people place things. The experimental results show that the proposed system successfully places the incoming various shaped objects in their proper positions.

5.
Data Brief ; 49: 109309, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37388322

RESUMO

In this article, a benchmark for real-world bin packing problems is proposed. This dataset consists of 12 instances of varying levels of complexity regarding size (with the number of packages ranging from 38 to 53) and user-defined requirements. In fact, several real-world-oriented restrictions were taken into account to build these instances: i) item and bin dimensions, ii) weight restrictions, iii) affinities among package categories iv) preferences for package ordering and v) load balancing. Besides the data, we also offer an own developed Python script for the dataset generation, coined Q4RealBPP-DataGen. The benchmark was initially proposed to evaluate the performance of quantum solvers. Therefore, the characteristics of this set of instances were designed according to the current limitations of quantum devices. Additionally, the dataset generator is included to allow the construction of general-purpose benchmarks. The data introduced in this article provides a baseline that will encourage quantum computing researchers to work on real-world bin packing problems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa