RESUMO
Molecular sequence data have transformed research on cryptogams (e.g., lichens, microalgae, fungi, and symbionts thereof) but methods are still strongly hampered by the small size and intermingled growth of the target organisms, poor cultivability and detrimental effects of their secondary metabolites. Here, we aim to showcase examples on which a modified direct PCR approach for diverse aspects of molecular work on environmental samples concerning biocrusts, biofilms, and cryptogams gives new options for the research community. Unlike traditional approaches, this methodology only requires biomass equivalent to colonies and fragments of 0.2 mm in diameter, which can be picked directly from the environmental sample, and includes a quick DNA lysis followed by a standardized PCR cycle that allows co-cycling of various organisms/target regions in the same run. We demonstrate that this modified method can (i) amplify the most widely used taxonomic gene regions and those used for applied and environmental sciences from single colonies and filaments of free-living cyanobacteria, bryophytes, fungi, and lichens, including their mycobionts, chlorobionts, and cyanobionts from both isolates and in situ material during co-cycling; (ii) act as a tool to confirm that the dominant lichen photobiont was isolated from the original sample; and (iii) optionally remove inhibitory secondary lichen substances. Our results represent examples which highlight the method's potential for future applications covering mycology, phycology, biocrusts, and lichenology, in particular.IMPORTANCECyanobacteria, green algae, lichens, and other cryptogams play crucial roles in complex microbial systems such as biological soil crusts of arid biomes or biofilms in caves. Molecular investigations on environmental samples or isolates of these microorganisms are often hampered by their dense aggregation, small size, or metabolism products which complicate DNA extraction and subsequent PCRs. Our work presents various examples of how a direct DNA extraction and PCR method relying on low biomass inserts can overcome these common problems and discusses additional applications of the workflow including adaptations.
Assuntos
Ecossistema , Líquens , Biomassa , Fungos/genética , Líquens/genética , Reação em Cadeia da Polimerase , DNARESUMO
Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).
Assuntos
Cianobactérias , Ecossistema , Clorofila A , Cianobactérias/genética , Genômica , Solo , CarotenoidesRESUMO
Biocrusts are phototroph-driven communities inhabiting arid soil surfaces. Like plants, most photoautotrophs (largely cyanobacteria) in biocrusts are thought to exchange fixed carbon for essential nutrients like nitrogen with cyanosphere bacteria. Here, we aim to compare beneficial interactions in rhizosphere and cyanosphere environments, including finding growth-promoting strains for hosts from both environments. To examine this, we performed a retrospective analysis of 16S rRNA gene sequencing datasets, host-microbe co-culture experiments between biocrust communities/biocrust isolates and a model grass (Brachypodium distachyon) or a dominant biocrust cyanobacterium (Microcoleus vaginatus), and metabolomic analysis. All 18 microbial phyla in the cyanosphere were also present in the rhizosphere, with additional 17 phyla uniquely found in the rhizosphere. The biocrust microbes promoted the growth of the model grass, and three biocrust isolates (Bosea sp._L1B56, Pseudarthrobacter sp._L1D14 and Pseudarthrobacter picheli_L1D33) significantly promoted the growth of both hosts. Moreover, pantothenic acid was produced by Pseudarthrobacter sp._L1D14 when grown on B. distachyon exudates, and supplementation of plant growth medium with this metabolite increased B. distachyon biomass by over 60%. These findings suggest that cyanobacteria and other diverse photoautotrophic hosts can be a source for new plant growth-promoting microbes and metabolites.
Assuntos
Plantas , Rizosfera , RNA Ribossômico 16S/genética , Estudos Retrospectivos , Biomassa , Solo , Microbiologia do SoloRESUMO
Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.
Assuntos
Briófitas , Líquens , Ecossistema , Mudança Climática , Plantas , Briófitas/fisiologia , Líquens/fisiologiaRESUMO
Biocrusts are key ecosystem engineers that are being destroyed due to anthropogenic disturbances such as trampling, agriculture and mining. In hyper-arid regions of the Negev Desert, phosphate has been mined for over six decades, altering the natural landscape over large spatial scales. In recent years, restoration-oriented practices were mandated in mining sites, however, the impact of such practices on the ecosystem, particularly the biocrust layer, has not been tested. Here, we evaluated post-mining biocrust bacterial communities and compared them to undisturbed (reference) biocrusts. We collected samples from four mining sites (each restored at a different year) and their corresponding reference sites. We hypothesized that post-mining bacterial communities would differ significantly from reference communities, given the slow regeneration of the biocrust. We also hypothesized that bacterial communities would vary among post-mining plots based on their restoration age. To test these hypotheses, we assessed the abundance and diversity of bacterial communities by sequencing the 16S rDNA and their photosynthetic potential by quantifying the abundance of cyanobacteria and chlorophyll a. The bacterial diversity was lower, and community composition differed significantly between post-mining and reference biocrusts. In addition, cyanobacteria abundances and chlorophyll a content were lower in post-mining biocrusts, indicating lower photosynthetic potential. However, no significant changes in bacterial communities were detected, regardless of the restoration age. We suggest that the practices implemented in the Negev mines may not support the recovery of the biocrust bacterial communities, particularly the cyanobacteria. Thus, active restoration measures are needed to accelerate the regeneration time of biocrusts at the hyper-arid Negev mines.
Assuntos
Cianobactérias , Ecossistema , Clorofila A , Cianobactérias/genética , Clima Desértico , Mineração , Fosfatos , Solo , Microbiologia do SoloRESUMO
Anthropogenic nitrogen (N) deposition is significantly altering both community structure and ecosystem processes in terrestrial ecosystems across the globe. However, our understanding of the consequences of N deposition in dryland systems remains relatively poor, despite evidence that drylands may be particularly vulnerable to increasing N inputs. In this study, we investigated the influence of 7 years of multiple levels of simulated N deposition (0, 2, 5, and 8 kg N ha-1 year-1) on plant community structure and biological soil crust (biocrust) cover at three semi-arid grassland sites spanning a soil texture gradient. Biocrusts are a surface community of mosses, lichens, cyanobacteria, and/or algae, and have been shown to be sensitive to N inputs. We hypothesized that N additions would decrease plant diversity, increase abundance of the invasive annual grass Bromus tectorum, and decrease biocrust cover. Contrary to our expectations, we found that N additions did not affect plant diversity or B. tectorum abundance. In partial support of our hypotheses, N additions negatively affected biocrust cover in some years, perhaps driven in part by inter-annual differences in precipitation. Soil inorganic N concentrations showed rapid but ephemeral responses to N additions and plant foliar N concentrations showed no response, indicating that the magnitude of plant and biocrust responses to N fertilization may be buffered by endogenous N cycling. More work is needed to determine N critical load thresholds for plant community and biocrust dynamics in semi-arid systems and the factors that determine the fate of N inputs.
Assuntos
Briófitas , Ecossistema , Colorado , Nitrogênio , SoloRESUMO
Cyanobacteria classified as Microcoleus steenstrupii play a significant role as pioneers of biological soil crusts (biocrusts), but this taxon is recognized to constitute a diverse complex of strains and field populations. With the aim of clarifying its systematics, we conducted a polyphasic characterization of this and allied taxa. A 16S ribosomal gene meta-analysis of published environmental sequences showed that the complex encompasses a variety of well supported genus-level clades with clade-specific environmental preferences, indicating significant niche differentiation. Fifteen strains in the M. steenstrupii complex were selected as representative of naturally occurring clades and studied using 16S rRNA gene phylogeny, morphology, and niche delineation with respect to temperature and rainfall. Bayesian phylogenetic reconstructions within a comprehensive, curated database of long 16S rRNA cyanobacterial sequences (1,000 base pairs or more) showed that they all belonged in a monophyletic, family-level clade (91.4% similarity) that included some other known genera of desiccation-resistant, largely terrestrial, filamentous, nonheterocystous cyanobacteria, including Coleofasciculus, the type genus for the family Coleofasciculaceae. To accommodate this biodiversity, we redescribe the Coleofasciculaceae, now composed of 11 genera, among which six are newly described herein (Funiculus, Parifilum, Arizonema, Crassifilum, Crustifilum, and Allocoleopsis), and five were previously recognized (Porphyrosiphon, Coleofasciculus, Pycnacronema, Potamolinea, and Wilmottia). We provide an evaluation of their respective niches and global distributions within biocrusts based on published molecular data. This new systematics treatment should help simplify and improve our understanding of the biology of terrestrial cyanobacteria.
Assuntos
Cianobactérias , Dessecação , Teorema de Bayes , Cianobactérias/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Biological soil crusts (biocrusts) are globally important microbial communities inhabiting the top layer of soils. They provide multiple services to dryland ecosystems but are particularly vulnerable to anthropogenic disturbance from which they naturally recover only slowly. Assisted inoculation with cyanobacteria is held as a promising approach to promote biocrust regeneration. Two different methodologies have been developed for this purpose: mass cultivation of biocrust pioneer species (such as the cyanobacteria Microcoleus spp.) on cellulose supports, and polymicrobial cultivation of biocrusts in soils within greenhouse settings. Here, we aimed to test a novel method to grow cyanobacterial biocrust inoculum based on fog irrigation of soil substrates (FISS) that can be used with either culture-based or mixed-community approaches. We found that the FISS system presents clear advantages over previous inoculum production methodologies; overall, FISS eliminates the need for specialized facilities and decreases user effort. Specifically, there were increased microbial yields and simplification of design compared to those of the culture-based and mixed-community approaches, respectively. Its testing also allows us to make recommendations on underexplored aspects of biocrust restoration: (i) field inoculation levels should be equal to or greater than the biomass found in the substrate and (ii) practices regarding evaluation of cyanobacterial biomass should, under certain circumstances, include proxies additional to chlorophyll aIMPORTANCE Biocrust inoculum production for use in dryland rehabilitation is a powerful tool in combating the degradation of dryland ecosystems. However, the facilities and effort required to produce high-quality inoculum are often a barrier to effective large-scale implementation by land managers. By unifying and optimizing the two foremost methods for cyanobacterial biocrust inoculum production, our work improves on the ease and cost with which biocrust restoration technology can be translated to practical widespread implementation.
Assuntos
Irrigação Agrícola/métodos , Cianobactérias/fisiologia , Microbiologia do Solo , Tempo (Meteorologia) , Biomassa , MicrobiotaRESUMO
Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust-dominated dryland ecosystem with laboratory incubations to confront 0-2 years (short-term hereafter) versus 8-10 years (longer-term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short-term warming observed in areas with high biocrust cover returned to control levels in the longer-term. Warming-induced increases in soil temperature were the main drivers of the short-term soil respiration responses, whereas longer-term soil respiration responses to warming were primarily driven by thermal acclimation and warming-induced reductions in biocrust cover. Our results highlight the importance of evaluating short- and longer-term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon-climate feedback in drylands.
Assuntos
Ecossistema , Solo , Carbono , Respiração , Microbiologia do Solo , TemperaturaRESUMO
Biological soil crusts (biocrusts)communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surfaceare fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.
Assuntos
Mudança Climática , Ecossistema , Poluição Ambiental/efeitos adversos , Microbiologia do Solo , Análise de Variância , Briófitas/fisiologia , Cianobactérias/fisiologia , Processos Heterotróficos/fisiologia , Humanos , Líquens/fisiologia , Modelos Estatísticos , Chuva , Temperatura , UtahRESUMO
Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.
Assuntos
Biodiversidade , Clorófitas/classificação , Cianobactérias/isolamento & purificação , Microbiologia do Solo , Países Bálticos , Clorófitas/genética , Cianobactérias/classificação , Cianobactérias/genética , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Solo/químicaRESUMO
The ecological function of biological crusts in arid and semi-arid areas is of great importance. Bacteria, as a crucial microbial group in biological crusts, play a key role in the formation, nutrient cycling, and regulation of these crusts. However, the succession of biological crusts and the diversity of bacterial communities, along with key environmental factors in the Loess Plateau's hilly and gully areas, remain unclear. This study investigated soil bacterial abundance and diversity in bare soil (BS), alga-lichen mixed crust (MC), and alga-lichen mixed crust subsoil (MCS) using high-throughput sequencing methods. It explored the relationship between the bacterial community in biological crusts and key environmental factors. The results indicated that the Chao1, Shannon index, and phylogenetic diversity of bacteria significantly increased with the succession of biological crusts. There were notable differences in the community composition and structure of bacteria at different stages of crust development, with Rubrobacteria and Cyanobacteriia dominating in MCS. Effective phosphorus, available potassium, nitrogen, pH, and total organic carbon were identified as key environmental factors affecting soil bacterial communities. In summary, the succession of biological crusts alters soil physicochemical characteristics and creates different ecological niches for bacterial communities. Soil nutrients and pH play a crucial role in the selection of bacterial species and the shaping of bacterial communities in the Loess Plateau's hilly and gully areas.
Assuntos
Bactérias , Nutrientes , Microbiologia do Solo , Solo , China , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Nutrientes/análise , Filogenia , Biodiversidade , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiota , Fósforo/análise , Fósforo/metabolismo , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genéticaRESUMO
Desertification and wastewater discharge are two global issues that severely threaten the sustainable use of available natural resources. This study aimed to explore the potential for transferring nutrients from municipal wastewater to drylands by inducing artificial biocrusts through the inoculation of wastewater-cultured Scytonema javanicum onto the sand surface in Gurbantunggut Desert. The results demonstrated that wastewater cultured S. javanicum effectively induced artificial biocrusts, achieving high photosynthetic biomass and nutrient accumulation (Chl-a, AP and OC) comparable to those induced by S. javanicum cultured in synthetic medium. In addition, the risk index (RI) value of 124.32 suggested a low ecological risk using wastewater cultured S. javanicum to induce artificial biocrusts. This study substantiates the feasibility of using municipal wastewater-cultured cyanobacteria to induce artificial biocrusts, thereby providing a dual benefit: enhancing soil stability in drylands and utilizing wastewater as a resource, thus presenting a significant stride towards the sustainable management of natural resources.
RESUMO
Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.
Assuntos
Produtos Agrícolas , Malus , Fixação de Nitrogênio , Microbiologia do Solo , Malus/microbiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Citrus/microbiologia , Ecossistema , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Solo/química , Agricultura , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteobactérias/genética , Estações do AnoRESUMO
Biocrusts dominate the soil surface in deserts and are composed of diverse microbial communities that provide important ecosystem services. Cyanobacteria in biocrusts produce many secondary metabolites, including the neurotoxins BMAA, AEG, DAB, anatoxin-a(S) (guanitoxin), and the microcystin hepatotoxins, all known or suspected to cause disease or illness in humans and other animals. We examined cyanobacterial growth and prevalence of these toxins in biocrusts at millimeter-scales, under a desert-relevant illumination gradient. In contrast to previous work, we showed that hydration had an overall positive effect on growth and toxin accumulation, that nitrogen was not correlated with growth or toxin production, and that phosphorus enrichment negatively affected AEG and BMAA concentrations. Excess illumination positively correlated with AEG, and negatively correlated with all other toxins and growth. Basic pH negatively affected only the accumulation of BMAA. Anatoxin-a(S) (guanitoxin) was not correlated with any tested variables, while microcystins were not detected in any of the samples. Concerning toxin pools, AEG and BMAA were good predictors of the presence of one another. In a newly conceptualized scheme, we integrate aspects of biocrust growth and toxin pool accumulations with arid-relevant desertification drivers.
RESUMO
Vascular plants exert significant effects on micro-environment, thereby affecting the distribution of biological soil crusts (biocrusts). The relationship between vascular plants and the spatial distribution characteristics of biocrusts is largely unknown. We investigated the distribution characteristics of biocrusts under the canopy of vascular plants in the water-wind erosion crisscross area of the Loess Plateau, where larger areas of biocrusts had been formed since the implantation of "Grain for Green" project. We analyzed the relationship between the canopy characteristics of different vascular plants and the spatial distribution of biocrusts using correlation analysis and random forest importance ranking methods, and further constructed a predictive model for the area of biocrusts under the canopy of vascular plants. The results showed that: 1) Cyanobacteria crust was the predominant biocrusts, followed by moss crust. 2) The canopy of vascular plants affected the spatial distribution of biocrusts, with notable differences in distribution pattern across different directions under the canopy of vascular plants. Biocrusts were primarily distributed in the 270°-315° and 315°-360° directions, while was less frequent in the 90°-135° and 135°-180° directions. 3) Radially, the coverage of biocrusts gradually increased from the root-base to the edge of the canopy of vascular plants. 4) The coverage of biocrusts under canopy was significantly related to the characteristics of vascular plants, including canopy area, long crown width, short crown width, litter area and plant height. 5) The relative importance of canopy area, long crown width, and short crown width to the biocrusts under the canopy was 13.7%, 12.1%, and 11.9%, respectively, while the relative importance of plant height and species type was relatively low, being 6.7% and 4.4%, respectively. 6) Results of the random forest model demonstrated strong predictive performance for biocrusts distribution based on canopy characteristics of vascular plants, with a prediction accuracy of 0.59 (R2) and a root mean square error of 1.2 m2. This model could be applied to predict and estimate the area of biocrusts under the canopy of vascular plants. This study provided a theoretical basis for in-depth understanding of the relationship between vascular plants and biocrusts in semi-arid climate regions, as well as for predicting the spatial distribution of biocrusts.
Assuntos
Ecossistema , China , Altitude , Briófitas/crescimento & desenvolvimento , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Árvores/classificaçãoRESUMO
Although commonly considered the gold standard for measurement of non-rainfall water (NRW), providing reasonable reliable data for vegetated soils, microlysimeters (MLs) tend to grossly overestimate NRW (primarily in form of dew) on barren soil. In arid and semiarid regions, the reported values may be overestimated by hundreds and even 1000 %. This bias is attributed to (i) the effect of the structure and dimension of the ML (ii) the tacit assumption that the weight difference between morning and the previous midday/evening results from dew or (iii) the belief that the MLs will provide reliable values if the difference in weight would be calculated only from the evening or night. For instance, from the time during which the air temperature reaches the dewpoint temperature or from the time during which condensation takes place on an adjacent leaf-wetness sensor. Calculating dew by the weight difference of MLs led to the notions that the fine-textured soil will necessarily promote higher values of dew, and the notion that higher amounts of dew are expected following days with low relative humidity, both of which hamper our understanding regarding dew formation. The reasons for the apparent different performance of MLs in vegetated (wet) and barren (arid) regions are discussed.
RESUMO
Soil biocrusts are characterized by the spatial self-organization of resident microbial populations at small scales. The cyanobacterium Microcoleus vaginatus, a prominent primary producer and pioneer biocrust former, relies on a mutualistic carbon (C) for nitrogen (N) exchange with its heterotrophic cyanosphere microbiome, a mutualism that may be optimized through the ability of the cyanobacterium to aggregate into bundles of trichomes. Testing both environmental populations and representative isolates, we show that the proximity of mutualistic diazotroph populations results in M. vaginatus bundle formation orchestrated through chemophobic and chemokinetic responses to gamma-aminobutyric acid (GABA) /glutamate (Glu) signals. The signaling system is characterized by: a high GABA sensitivity (nM range) and low Glu sensitivity (µM to mM), the fact that GABA and Glu are produced by the cyanobacterium as an autoinduction response to N deficiency, and by the presence of interspecific signaling by heterotrophs in response to C limitation. Further, it crucially switches from a positive to a negative feedback loop with increasing GABA concentration, thus setting maximal bundle sizes. The unprecedented use of GABA/Glu as an intra- and interspecific signal in the spatial organization of microbiomes highlights the pair as truly universal infochemicals.
Assuntos
Microbiota , Solo , Simbiose , Fixação de Nitrogênio , Microbiologia do SoloRESUMO
Biocrusts determine soil stability and resiliency, with a special role played by oxygenic photoautotrophic microorganisms in these communities. We evaluated temporal and geographic trends in studies focused on these microorganisms in biocrusts. Two databases were surveyed to obtain scientific articles published from 1998 to 2020 containing the terms 'biocrusts,' 'algae,' and 'cyanobacteria.' Although interest in biocrusts has increased recently, their ecological importance is still little explored. The scientific articles that mentioned a species list of cyanobacteria and/or algae revealed a very heterogeneous geographic distribution of research. Biocrusts have not been explored in many regions and knowledge in the tropics, where these communities showed high species richness, is limited. Geographic gaps were detected and more detailed studies are needed, mainly where biocrust communities are threatened by anthropogenic impacts. Aiming to address these knowledge gaps, we assembled a taxonomic list of all algae and cyanobacteria found in these articles, including information on their occurrence and ecology. This review is an updated global taxonomic survey of biocrusts, which importantly reveals their high species richness of oxygenic photoautotrophic microorganisms. We believe this database will be useful to future research by providing valuable taxonomic and biogeographic information regarding algae and cyanobacteria in biocrusts.