Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Nano Lett ; 24(26): 7895-7902, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913401

RESUMO

On-demand engineering of cell membrane receptors to nongenetically intervene in cellular behaviors is still a challenge. Herein, a membraneless enzyme biofuel cell-based self-powered biosensor (EBFC-SPB) was developed for autonomously and precisely releasing Zn2+ to initiate DNAzyme-based reprogramming of cell membrane receptors, which further mediates signal transduction to regulate cellular behaviors. The critical component of EBFC-SPB is a hydrogel film on a biocathode which is prepared using a Fe3+-cross-linked alginate hydrogel film loaded with Zn2+ ions. In the working mode in the presence of glucose/O2, the hydrogel is decomposed due to the reduction of Fe3+ to Fe2+, accompanied by rapid release of Zn2+ to specifically activate a Zn2+-responsive DNAzyme nanodevice on the cell surface, leading to the dimerization of homologous or nonhomologous receptors to promote or inhibit cell proliferation and migration. This EBFC-SPB platform provides a powerful "sensing-actuating-treating" tool for chemically regulating cellular behaviors, which holds great promise in precision biomedicine.


Assuntos
Técnicas Biossensoriais , Zinco , Zinco/química , Zinco/metabolismo , Receptores de Superfície Celular/metabolismo , DNA Catalítico/metabolismo , DNA Catalítico/química , Humanos , Hidrogéis/química , Proliferação de Células/efeitos dos fármacos , Fontes de Energia Bioelétrica , Alginatos/química , Movimento Celular/efeitos dos fármacos
2.
Molecules ; 29(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202838

RESUMO

Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.


Assuntos
Fontes de Energia Bioelétrica , Nanoestruturas , Eletricidade , Condutividade Elétrica , Eletrônica
3.
Small ; 19(35): e2301654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098638

RESUMO

Enzymatic biofuel cells have become powerful tools in biosensing, which however generally suffer from the limited loading efficiency as well as low catalytic activity and poor stability of bioenzymes. Herein, the hierarchical porous metal-organic frameworks (MOFs) are synthesized using tannic acid (TA) for structural etching, which realizes co-encapsulation of glucose dehydrogenase (GDH) and nicotinamide adenine dinucleotide (NAD+ ) cofactor in zeolitic imidazolate framework (ZIF-L) and are further used as the biocatalytic microreactors to modify bioanode. In this work, the TA-controlled etching can not only expand the pore size of microreactors, but also achieve the reorientation of enzymes in their lower surface energy form, therefore enhancing the biocatalysis of cofactor-dependent enzyme. Meanwhile, the topological DNA tetrahedron is assembled on the microreactors, which acts as the microRNA-responsive "lock" to perform the cascade signal amplification of exonuclease III-assisted target recycling on bioanode and hybridization chain reaction (HCR) on biocathode. The proposed self-powered biosensor has achieved a detection limit as low as 2 aM (6 copies miRNA-21 in a 5 µL of sample), which is further successfully applied to identify cancer cells and clinical serums of breast cancer patients based on the different levels of miRNA-21, holding great potential in accurate disease identification and clinical diagnosis.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Estruturas Metalorgânicas , MicroRNAs , Humanos , Estruturas Metalorgânicas/química , Biocatálise , Porosidade , Limite de Detecção
4.
Small ; 19(10): e2206257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549673

RESUMO

This work focusses on developing a hybrid enzyme biofuel cell-based self-powered biosensor with appreciable stability and durability using murine leukemia fusion gene fragments (tDNA) as a model analyte. The cell consists of a Ti3 C2 Tx /multiwalled carbon nanotube/gold nanoparticle/glucose oxidase bioanode and a Zn/Co-modified carbon nanotube cathode. The bioanode uniquely exhibits strong electron transfer ability and a high surface area for the loading of 1.14 × 10-9  mol cm-2 glucose oxidase to catalyze glucose oxidation. Meanwhile, the abiotic cathode with a high oxygen reduction reaction activity negates the use of conventional bioenzymes as catalysts, which aids in extending the stability and durability of the sensing system. The biosensor offers a 0.1 fm-1 nm linear range and a detection limit of 0.022 fm tDNA. Additionally, the biosensor demonstrates a reproducibility of ≈4.85% and retains ≈87.42% of the initial maximal power density after a 4-week storage at 4 °C, verifying a significantly improved long-term stability.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Animais , Camundongos , Glucose Oxidase/metabolismo , Biocombustíveis , Ouro , Reprodutibilidade dos Testes , Titânio , Eletrodos , Glucose
5.
Sensors (Basel) ; 23(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067826

RESUMO

Quick and effective point-of-care (POC) devices have the chance to revolutionize healthcare in developed and developing countries since they can operate anywhere the patient is, with the possibility of obtaining and sending the results to the doctor without delay. In recent years, significant efforts have focused on developing new POC systems that can screen for biomarkers continuously and non-invasively in body fluids to prevent, diagnose, and manage diseases. However, one of the critical challenges left to address is how to power them effectively and sufficiently. In developing countries and rural and remote areas, where there are usually no well-established electricity grids or nearby medical facilities, and using batteries is unreliable or not cost-effective, alternative power sources are the most challenging issue for stand-alone and self-sustained POC devices. Here, we provide an overview of the techniques for used self-powering POC devices, where the sample is used to detect and simultaneously generate energy to power the system. Likewise, this paper introduced the state-of-the-art with a review of different research projects, patents, and commercial products for self-powered POCs from the mid-2010s until present day.


Assuntos
Técnicas Biossensoriais , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Fontes de Energia Elétrica , Atenção à Saúde , Eletricidade , Técnicas Biossensoriais/métodos
6.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768466

RESUMO

Metal-organic frameworks (MOFs) are crystalline materials that are formed by self-assembling organic linkers and metal ions with large specific areas and pore volumes. Their chemical tunability, structural diversity, and tailor-ability make them adaptive to decorate many substrate materials, such as biomass-derived carbon materials, and competitive in many environmental biosystems, such as biofuel cells, bioelectrocatalysts, microbial metal reduction, and fermentation systems. In this review, we surmised the recent progress of MOFs and MOF-derived materials and their applications in environmental biosystems. The behavior of MOFs and MOF-derived materials in different environmental biosystems and their influences on performance are described. The inherent mechanisms will guide the rational design of MOF-related materials and lead to a better understanding of their interaction with biocomponents.


Assuntos
Estruturas Metalorgânicas , Biomassa , Carbono , Fermentação , Meio Ambiente
7.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902087

RESUMO

Glucose oxidase (GOx)-based electrodes are important for bioelectronics, such as glucose sensors. It is challenging to effectively link GOx with nanomaterial-modified electrodes while preserving enzyme activity in a biocompatible environment. To date, no reports have used biocompatible food-based materials, such as egg white proteins, combined with GOx, redox molecules, and nanoparticles to create the biorecognition layer for biosensors and biofuel cells. This article demonstrates the interface of GOx integrated with egg white proteins on a 5 nm gold nanoparticle (AuNP) functionalized with a 1,4-naphthoquinone (NQ) and conjugated with a screen-printed flexible conductive carbon nanotube (CNT)-modified electrode. Egg white proteins containing ovalbumin can form three-dimensional scaffolds to accommodate immobilized enzymes and adjust the analytical performance. The structure of this biointerface prevents the escape of enzymes and provides a suitable microenvironment for the effective reaction. The bioelectrode's performance and kinetics were evaluated. Using redox-mediated molecules with the AuNPs and the three-dimensional matrix made of egg white proteins improves the transfer of electrons between the electrode and the redox center. By engineering the layer of egg white proteins on the GOx-NQ-AuNPs-mediated CNT-functionalized electrodes, we can modulate analytical performances such as sensitivity and linear range. The bioelectrodes demonstrate high sensitivity and can prolong the stability by more than 85% after 6 h of continuous operation. The use of food-based proteins with redox molecule-modified AuNPs and printed electrodes demonstrates advantages for biosensors and energy devices due to their small size, large surface area, and ease of modification. This concept holds a promise for creating biocompatible electrodes for biosensors and self-sustaining energy devices.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Glucose Oxidase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Oxirredução , Eletrodos , Enzimas Imobilizadas/química , Técnicas Biossensoriais/métodos , Nanotubos de Carbono/química , Proteínas do Ovo/metabolismo , Glucose/química
8.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239950

RESUMO

The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.


Assuntos
Hidrogenase , Prótons , Hidrogênio/química , Oxirredução , Hidrogenase/química , Fotossíntese , Catálise
9.
Angew Chem Int Ed Engl ; 62(42): e202310245, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37632702

RESUMO

Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 µm, can detect real-time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience.

10.
Chemistry ; 28(23): e202104342, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080290

RESUMO

Sulfite is a potent toxic substance causing harm to multi-organ in human. Despite toxicity, it is widely used as preservative, anti-browning and anti-oxidant in foods, beverages, and pharmaceuticals, which cause easy admission of sulfite in human. Sulfite is also produced endogenously during the catabolism of cysteine and methionine. In vivo, the serum sulfite level at physiological range is strictly maintained by a molybdenum dependent sulfite oxidase (SO), which catalyzes sulfite to sulfate oxidation via a two-electron oxidation pathway. The loss of SO activity causes high serum sulfite level that fosters several diseases, including asthma, neurological dysfunction, birth defects, and heart diseases. The cytotoxicity of (bi)sulfite is implicated as sulfite radicals, which are generated by mainly heme-peroxidases via a one-electron oxidation pathway. On the other hand, the toxic sulfite radicals are neutralized to sulfite by heme-globins. The enzymatic reduction of sulfite to sulfide is catalyzed by sulfite reductase, which contains an unusual metal cofactor, siroheme-[4Fe4S]-cluster. Overall, the interaction of sulfite with various metalloproteins in vivo is a close relation with human health. Therefore, this review describes the metabolic conversion of (bi)sulfite to sulfate, sulfite radical or sulfide via oxidation or reduction pathways by various metalloproteins (specially SOs, peroxidases, heme-globins, and sulfite reductases), and the potential applications of sulfite in biosensors/biofuel cells, anti-browning, and advance oxidation process.


Assuntos
Metaloproteínas , Globinas , Heme , Humanos , Hidrogênio , Metaloproteínas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxidases , Sulfatos , Sulfetos , Sulfitos/metabolismo
11.
Biosci Biotechnol Biochem ; 86(2): 141-156, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34755834

RESUMO

Redox enzymes can work as efficient electrocatalysts. The coupling of redox enzymatic reactions with electrode reactions is called enzymatic bioelectrocatalysis, which imparts high reaction specificity to electrode reactions with nonspecific characteristics. The key factors required for bioelectrocatalysis are hydride ion/electron transfer characteristics and low specificity for either substrate in redox enzymes. Several theoretical features of steady-state responses are introduced to understand bioelectrocatalysis and to extend the performance of bioelectrocatalytic systems. Applications of the coupling concept to bioelectrochemical devices are also summarized with emphasis on the achievements recorded in the research group of the author.


Assuntos
Técnicas Eletroquímicas
12.
Sensors (Basel) ; 22(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35009869

RESUMO

Electrically conductive polymers are promising materials for charge transfer from living cells to the anodes of electrochemical biosensors and biofuel cells. The modification of living cells by polypyrrole (PPy) causes shortened cell lifespan, burdens the replication process, and diminishes renewability in the long term. In this paper, the viability and morphology non-modified, inactivated, and PPy-modified yeasts were evaluated. The results displayed a reduction in cell size, an incremental increase in roughness parameters, and the formation of small structural clusters of polymers on the yeast cells with the increase in the pyrrole concentration used for modification. Yeast modified with the lowest pyrrole concentration showed minimal change; thus, a microbial fuel cell (MFC) was designed using yeast modified by a solution containing 0.05 M pyrrole and compared with the characteristics of an MFC based on non-modified yeast. The maximal generated power of the modified system was 47.12 mW/m2, which is 8.32 mW/m2 higher than that of the system based on non-modified yeast. The open-circuit potentials of the non-modified and PPy-modified yeast-based cells were 335 mV and 390 mV, respectively. Even though applying a PPy layer to yeast increases the charge-transfer efficiency towards the electrode, the damage done to the cells due to modification with a higher concentration of PPy diminishes the amount of charge transferred, as the current density drops by 846 µA/cm2. This decrease suggests that modification by PPy may have a cytotoxic effect that greatly hinders the metabolic activity of yeast.


Assuntos
Fontes de Energia Bioelétrica , Polímeros , Pirróis , Saccharomyces cerevisiae
13.
Sensors (Basel) ; 21(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916302

RESUMO

This review focuses on the overview of microbial amperometric biosensors and microbial biofuel cells (MFC) and shows how very similar principles are applied for the design of both types of these bioelectronics-based devices. Most microorganism-based amperometric biosensors show poor specificity, but this drawback can be exploited in the design of microbial biofuel cells because this enables them to consume wider range of chemical fuels. The efficiency of the charge transfer is among the most challenging and critical issues during the development of any kind of biofuel cell. In most cases, particular redox mediators and nanomaterials are applied for the facilitation of charge transfer from applied biomaterials towards biofuel cell electrodes. Some improvements in charge transfer efficiency can be achieved by the application of conducting polymers (CPs), which can be used for the immobilization of enzymes and in some particular cases even for the facilitation of charge transfer. In this review, charge transfer pathways and mechanisms, which are suitable for the design of biosensors and in biofuel cells, are discussed. Modification methods of the cell-wall/membrane by conducting polymers in order to enhance charge transfer efficiency of microorganisms, which can be potentially applied in the design of microbial biofuel cells, are outlined. The biocompatibility-related aspects of conducting polymers with microorganisms are summarized.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletrodos , Oxirredução , Polímeros
14.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948296

RESUMO

With the rapid decline of fossil fuels, various types of biofuel cells (BFCs) are being developed as an alternative energy source. BFCs based on multi-enzyme cascade reactions are utilized to extract more electrons from substrates. Thus, more power density is obtained from a single molucule of substrate. In the present study, a bioanode that could extract six electrons from a single molecule of L-proline via a three-enzyme cascade reaction was developed and investigated for its possible use in BFCs. These enzymes were immobilized on the electrode to ensure highly efficient electron transfer. Then, oriented immobilization of enzymes was achieved using two types of self-assembled monolayers (SAMs). In addition, a microfluidic system was incorporated to achieve efficient electron transfer. The microfluidic system, in which the electrodes were arranged in a tooth-shaped comb, allowed for substrates to be supplied continuously to the cascade, which resulted in smooth electron transfer. Finally, we developed a high-performance bioanode which resulted in the accumulation of higher current density compared to that of a gold disc electrode (205.8 µA cm-2: approximately 187 times higher). This presents an opportunity for using the bioanode to develop high-performance BFCs in the future.


Assuntos
Microfluídica/métodos , Fontes de Energia Bioelétrica , Técnicas Biossensoriais/métodos , Eletrodos , Elétrons , Enzimas Imobilizadas/química , Ouro/química , Oxirredução
15.
J Environ Manage ; 298: 113483, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391107

RESUMO

Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Nanoestruturas , Eletrodos , Humanos , Polímeros
16.
Angew Chem Int Ed Engl ; 60(4): 2078-2083, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33006812

RESUMO

We report on a photobioelectrochemical fuel cell consisting of a glucose-oxidase-modified BiFeO3 photobiocathode and a quantum-dot-sensitized inverse opal TiO2 photobioanode linked to FAD glucose dehydrogenase via a redox polymer. Both photobioelectrodes are driven by enzymatic glucose conversion. Whereas the photobioanode can collect electrons from sugar oxidation at rather low potential, the photobiocathode shows reduction currents at rather high potential. The electrodes can be arranged in a sandwich-like manner due to the semi-transparent nature of BiFeO3 , which also guarantees a simultaneous excitation of the photobioanode when illuminated via the cathode side. This tandem cell can generate electricity under illumination and in the presence of glucose and provides an exceptionally high OCV of about 1 V. The developed semi-artificial system has significant implications for the integration of biocatalysts in photoactive entities for bioenergetic purposes, and it opens up a new path toward generation of electricity from sunlight and (bio)fuels.

17.
Chemistry ; 26(21): 4798-4804, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31999372

RESUMO

A maximization of a direct electron transfer (DET) between redox enzymes and electrodes can be obtained through the oriented immobilization of enzymes onto an electroactive surface. Here, a strategy for obtaining carbon nanotube (CNTs) based electrodes covalently modified with perfectly control-oriented fungal laccases is presented. Modelizations of the laccase-CNT interaction and of electron conduction pathways serve as a guide in choosing grafting positions. Homogeneous populations of alkyne-modified laccases are obtained through the reductive amination of a unique surface-accessible lysine residue selectively engineered near either one or the other of the two copper centers in enzyme variants. Immobilization of the site-specific alkynated enzymes is achieved by copper-catalyzed click reaction on azido-modified CNTs. A highly efficient reduction of O2 at low overpotential and catalytic current densities over -3 mA cm-2 are obtained by minimizing the distance from the electrode surface to the trinuclear cluster.


Assuntos
Cobre/química , Lacase/química , Nanotubos de Carbono/química , Oxigênio/química , Catálise , Química Click , Eletrodos , Elétrons , Enzimas Imobilizadas/química , Oxirredução
18.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287304

RESUMO

Recent progress in the application of new 2D-materials-MXenes-in the design of biosensors, biofuel cells and bioelectronics is overviewed and some advances in this area are foreseen. Recent developments in the formation of a relatively new class of 2D metallically conducting MXenes opens a new avenue for the design of conducting composites with metallic conductivity and advanced sensing properties. Advantageous properties of MXenes suitable for biosensing applications are discussed. Frontiers and new insights in the area of application of MXenes in sensorics, biosensorics and in the design of some wearable electronic devices are outlined. Some disadvantages and challenges in the application of MXene based structures are critically discussed.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Nanoestruturas , Nanotecnologia , Catálise , Eletrodos , Enzimas/química , Nanotecnologia/métodos , Proteínas/química , Eletricidade Estática
19.
Angew Chem Int Ed Engl ; 59(38): 16506-16510, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32432842

RESUMO

The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual-gas diffusion electrode H2 /O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer-based high-current-density H2 -oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm-2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer-based biofuel cell with outstanding power densities of 5.4 mW cm-2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2 .


Assuntos
Biocombustíveis , Desulfovibrio desulfuricans/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Oxigênio/metabolismo , Polímeros/metabolismo , Fontes de Energia Bioelétrica , Desulfovibrio desulfuricans/química , Desulfovibrio desulfuricans/enzimologia , Difusão , Eletrodos , Hidrogênio/química , Hidrogenase/química , Estrutura Molecular , Oxirredução , Oxigênio/química , Polímeros/química
20.
Angew Chem Int Ed Engl ; 59(23): 8969-8973, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32198829

RESUMO

Aliphatic synthetic intermediates with high added value are generally produced from alkane sources (e.g., petroleum) by inert carbon-hydrogen (C-H) bond activation using classical chemical methods (i.e. high temperature, rare metals). As an alternative approach for these reactions, alkane monooxygenase from Pseudomonas putida (alkB) is able to catalyze the difficult terminal oxyfunctionalization of alkanes selectively and under mild conditions. Herein, we report an electrosynthetic system using an alkB biocathode which produces alcohols, epoxides, and sulfoxides through bioelectrochemical hydroxylation, epoxidation, sulfoxidation, and demethylation. The capacity of the alkB binding pocket to protect internal functional groups is also demonstrated. By coupling our alkB biocathode with a hydrogenase bioanode and using H2 as a clean fuel source, we have developed and characterized a series of enzymatic fuel cells capable of oxyfunctionalization while simultaneously producing electricity.


Assuntos
Alcanos/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Oxigenases de Função Mista/metabolismo , Eletrodos , Transporte de Elétrons , Compostos de Epóxi/química , Hidroxilação , Metilação , Oxigênio/química , Pseudomonas putida/enzimologia , Safrol/análogos & derivados , Safrol/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa