Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; 15(38): e1902032, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368636

RESUMO

Increasing awareness toward environmental remediation and renewable energy has led to a vigorous demand for exploring a win-win strategy to realize the eco-efficient conversion of pollutants ("trash") into energy-storage nanomaterials ("treasure"). Inspired by the biological metabolism of bacteria, Acidithiobacillus ferrooxidans (A. ferrooxidans) is successfully exploited as a promising eco-friendly sustainable biofactory for the controllable fabrication of α-Fe2 O3 nanorods via the oxidation of soluble ferrous irons to insoluble ferric substances (Jarosite, KFe3 (SO4 )2 (OH)6 ) and a facile subsequent heat treatment. It is demonstrated that the stable solid electrolyte interphase layers and marvelous cracks in situ formed in biometabolic α-Fe2 O3 nanorods play important roles that not only significantly enhance the structure stability but also facilitate electron and ion transfer. Consequently, these biometabolic α-Fe2 O3 nanorods deliver a superior stable capacity of 673.9 mAh g-1 at 100 mA g-1 over 200 cycles and a remarkable multi-rate capability that observably prevails over the commercial counterpart. It is highly expected that such biological synthesis strategies can shed new light on an emerging field of research interconnecting biotechnology, energy technology, environmental technology, and nanotechnology.


Assuntos
Acidithiobacillus/química , Fontes de Energia Elétrica , Lítio/química , Nanoestruturas/química , Nanotubos/química , Nanotecnologia/métodos
2.
J Orthop Surg Res ; 19(1): 281, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711140

RESUMO

PURPOSE: This study aimed to investigate an early diagnostic method for lumbar disc degeneration (LDD) and improve its diagnostic accuracy. METHODS: Quantitative biomarkers of the lumbar body (LB) and lumbar discs (LDs) were obtained using nuclear magnetic resonance (NMR) detection technology. The diagnostic weights of each biological metabolism indicator were screened using the factor analysis method. RESULTS: Through factor analysis, common factors such as the LB fat fraction, fat content, and T2* value of LDs were identified as covariates for the diagnostic model for the evaluation of LDD. This model can optimize the accuracy and reliability of LDD diagnosis. CONCLUSION: The application of biomarker quantification methods based on NMR detection technology combined with factor analysis provides an effective means for the early diagnosis of LDD, thereby improving diagnostic accuracy and reliability.


Assuntos
Biomarcadores , Degeneração do Disco Intervertebral , Vértebras Lombares , Imageamento por Ressonância Magnética , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/metabolismo , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Biomarcadores/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Análise Fatorial , Reprodutibilidade dos Testes , Diagnóstico Precoce
3.
Water Res ; 256: 121568, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593607

RESUMO

Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.


Assuntos
Praguicidas , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias/química , Medição de Risco , Eliminação de Resíduos Líquidos , China
4.
Sci Rep ; 14(1): 4809, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413662

RESUMO

2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) can provide tumor biological metabolism and skeletal muscle composition information. The aim of this study was to evaluate overall survival (OS) and short-term efficacy of cervical squamous cell carcinoma combining tumor biological metabolism and skeletal muscle composition parameters. Eighty two patients with cervical squamous cell carcinoma were included in the study, who received 18F-FDG PET/CT scans before treatment. Clinical characteristics, tumor biological metabolism parameters [standardized uptake value, metabolic tumor volume (MTV), total lesion glycolysis, heterogeneity of tumors, etc.] and body composition parameters were recorded. The survival analysis of cervical squamous cell carcinoma patients was performed by univariate and multivariate analysis. A combined model included clinical indicators, tumor metabolism parameters and sarcopenia was constructed to evaluate OS of patients. According to the Response Evaluation Criteria in Solid Tumours version 1.1, the relationship between sarcopenia with tumor metabolism parameters and short-term efficacy was investigated in subgroup. The results indicate that sarcopenia and high value of the sum of MTV of lesions and metastases (MTVtotal) were poor prognostic factors in patients with cervical squamous cell carcinoma. The combination of sarcopenia, MTVtotal and clinical factors provided an improved prediction of OS especially in the long term after treatment. Nutritional status of the patients and tumor metabolism may not affect the short-term efficacy of chemoradiotherapy in cervical squamous cell carcinoma patients.


Assuntos
Carcinoma de Células Escamosas , Sarcopenia , Neoplasias do Colo do Útero , Feminino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/metabolismo , Fluordesoxiglucose F18/metabolismo , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Prognóstico , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/metabolismo , Tomografia por Emissão de Pósitrons , Músculo Esquelético/metabolismo , Carga Tumoral , Compostos Radiofarmacêuticos , Estudos Retrospectivos
5.
Artigo em Inglês | MEDLINE | ID: mdl-36078713

RESUMO

In this study, 16 PAHs were selected as the priority control pollutants to summarize their environmental metabolism and transformation processes, including photolysis, plant degradation, bacterial degradation, fungal degradation, microalgae degradation, and human metabolic transformation. Meanwhile, a total of 473 PAHs by-products generated during their transformation and degradation in different environmental media were considered. Then, a comprehensive system was established for evaluating the PAHs by-products' neurotoxicity, immunotoxicity, phytotoxicity, developmental toxicity, genotoxicity, carcinogenicity, and endocrine-disrupting effect through molecular docking, molecular dynamics simulation, 3D-QSAR model, TOPKAT method, and VEGA platform. Finally, the potential environmental risk (phytotoxicity) and human health risks (neurotoxicity, immunotoxicity, genotoxicity, carcinogenicity, developmental toxicity, and endocrine-disrupting toxicity) during PAHs metabolism and transformation were comprehensively evaluated. Among the 473 PAH's metabolized and transformed products, all PAHs by-products excluding ACY, CHR, and DahA had higher neurotoxicity, 152 PAHs by-products had higher immunotoxicity, and 222 PAHs by-products had higher phytotoxicity than their precursors during biological metabolism and environmental transformation. Based on the TOPKAT model, 152 PAH by-products possessed potential developmental toxicity, and 138 PAH by-products had higher genotoxicity than their precursors. VEGA predicted that 247 kinds of PAH derivatives had carcinogenic activity, and only the natural transformation products of ACY did not have carcinogenicity. In addition to ACY, 15 PAHs produced 123 endocrine-disrupting substances during metabolism and transformation. Finally, the potential environmental and human health risks of PAHs metabolism and transformation products were evaluated using metabolic and transformation pathway probability and degree of toxic risk as indicators. Accordingly, the priority control strategy for PAHs was constructed based on the risk entropy method by screening the priority control pathways. This paper assesses the potential human health and environmental risks of PAHs in different environmental media with the help of models and toxicological modules for the toxicity prediction of PAHs by-products, and thus designs a risk priority control evaluation system for PAHs.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Carcinógenos/toxicidade , Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Humanos , Simulação de Acoplamento Molecular , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
6.
J Hazard Mater ; 432: 128539, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334273

RESUMO

The discharge of personal care products (PPCPs) to sewer systems increased due to the rapid expansion of cities, while PPCPs transformation in sewer and the potential threat to receiving water environments have been rarely revealed. In this study, six PPCPs (antibiotics, generic drugs and personal care products) were added continuously over a 90-day experimental period to investigate the effect of transformation in a pilot sewer. The results showed that the biological metabolism of carbon, nitrogen and phosphorus pollutants were restricted under the PPCPs stress condition. The genomic detection also confirmed that the diversity of microflora in sewer sediment were obviously decreased with the PPCPs transformation, and the total relative abundance of dominant phylum species (Firmicutes, Bacteroidetes and Proteobacteria) increased from 67.7% to 94.9%. In addition, principal coordinate analysis and metagenome showed that the two kinds of antibiotics were the most important inducement for the metabolic dysfunction in sewer systems, and led to the increase of functional gene of "Human Disease" (accounted for 0.97%) which could form more harmful metabolites to cause serious exposure hazards. Thus, this investigation provided the insights into the metabolic hazards of PPCPs bioconversions in sewers, which hoped to bring to the forefront of PPCPs emission to sewers by society.


Assuntos
Cosméticos , Poluentes Químicos da Água , Antibacterianos/análise , Cosméticos/análise , Monitoramento Ambiental/métodos , Humanos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Pollut Res Int ; 28(8): 9020-9028, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33475920

RESUMO

In the past decades, the environmental presence and ecological risks of chlorinated paraffins (CPs), an emerging class of organic halogen compounds, have been receiving increasing attention worldwide. Short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) constitute the important CPs of considerable concern. In this review article, the state-of-the-art research status on the environmental transformation of CPs, including thermal decomposition, photolytic and photocatalytic degradation, biological metabolism, and atmospheric transformation, was summarized and integrated in detail. The degradation efficiency and transformation products of CPs in these environmental processes were evaluated, in which dechlorination was considered as the major reaction pathway. Notably, waste incineration of CPs has been demonstrated to generate a variety of persistent chlorinated aromatic hydrocarbons such as polychlorinated biphenyls and polychlorinated naphthalenes, which have more significant environmental impacts. Additionally, photodegradation and photocatalysis are suggested as the feasible techniques for efficient removal of SCCPs from water matrices. Overall, the current transformation studies of CPs could facilitate the comprehensive understanding of their environmental behaviors and fate as well as the development of promising remediation strategies for pollution control.


Assuntos
Hidrocarbonetos Clorados , Bifenilos Policlorados , China , Monitoramento Ambiental , Poluição Ambiental , Hidrocarbonetos Clorados/análise , Parafina/análise , Bifenilos Policlorados/análise
8.
Environ Int ; 135: 105380, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838263

RESUMO

Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors' catabolism and aromatic system' anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes.


Assuntos
Compostagem , Substâncias Húmicas , Oxirredução , Pentaclorofenol , Solo
9.
J Agric Food Chem ; 68(9): 2765-2772, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32045244

RESUMO

Fatty acid esters of 3-monochloropropane 1,2-diol (3-MCPD esters) are processing-induced food toxicants, with the kidney as their major target organ. For the first time, this study treated Sprague Dawley (SD) rats with 3-MCPD 1-monooleate at 10 and 100 mg/kg BW/day and 1-monostearate at 15 and 150 mg/kg BW/day for 90 days and examined for their potential semi-long-term nephrotoxicity and the associated molecular mechanisms. No bodyweight difference was observed between groups during the study. Both 3-MCPD 1-monooleate and 1-monostearate resulted in a dose-dependent increase of serum urea creatinine, uric acid and urea nitrogen levels, and histological renal impairment. The proteomic analysis of the kidney samples showed that the 3-MCPD esters deregulated proteins involved in the pathways for ion transportation, apoptosis, the metabolism of xenobiotics, and enzymes related to endogenous biological metabolisms of carbohydrates, amino acids, nitrogen, lipids, fatty acids, and the tricarboxylic acid (TCA) cycle, providing partial explanation for the nephrotoxicity of 3-MCPD esters.


Assuntos
Nefropatias/metabolismo , Rim/efeitos dos fármacos , Estearatos/toxicidade , alfa-Cloridrina/toxicidade , Animais , Creatinina/urina , Ésteres/metabolismo , Ésteres/toxicidade , Humanos , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/genética , Nefropatias/urina , Masculino , Proteômica , Ratos , Ratos Sprague-Dawley , Estearatos/química , Estearatos/metabolismo , Ácido Úrico/urina , alfa-Cloridrina/metabolismo
10.
Artigo em Chinês | WPRIM | ID: wpr-610484

RESUMO

Objective · To globally study the influence of arsenite to the various biological pathways of Escherichia coli as a model organism.Methods · The protein-arsenite interactions was globally studied based on a proteome microarray constructed by 4256 affinity-purified Escherichia coli proteins. The functions of interacting proteins and their network were then analyzed by bioinformatics. Results · 91 proteins that remarkably interact with arsenic were successfully identified. Bioinformatics analysis found that most of the proteins possess catalytic activityand are involved in various biosynthesis and cellular metabolism pathways. The interactions of arsenic with proteins encoded by malY, cfa and hypF genes were further validated by Western blotting, which proves the results of proteome microarray reliable. Conclusion · Arsenite interacts with a variety of enzymes ofEscherichia coli and can greatly affect its biological metabolism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa