Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984541

RESUMO

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Assuntos
Matriz Extracelular , Coração , Inibidor Tecidual de Metaloproteinase-2 , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Matriz Extracelular/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Coração/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Morfogênese , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Fenômenos Biomecânicos , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/metabolismo , Ventrículos do Coração/embriologia
2.
Exp Cell Res ; 431(2): 113766, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678504

RESUMO

Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.


Assuntos
Sinais (Psicologia) , Engenharia Tecidual , Mecanotransdução Celular , Medicina Regenerativa , Células-Tronco
3.
J Cell Mol Med ; 25(11): 5164-5176, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939272

RESUMO

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common orthopaedic disease. GIONFH primarily manifests clinically as hip pain in the early stages, followed by the collapse of the femoral head, narrowing of the hip joint space and damage to the acetabulum, resulting in severely impaired mobility. However, the pathogenesis of GIONFH is not clearly understood. Recently, biomechanical forces and non-coding RNAs have been suggested to play important roles in the pathogenesis of GIONFH. This study aimed to evaluate the role of biomechanical forced and non-coding RNAs in GIONFH. We utilized an in vivo, rat model of GIONFH and used MRI, µCT, GIONFH-TST (tail suspension test), GIONFH-treadmill, haematoxylin and eosin staining, qRT-PCR and Western blot analysis to analyse the roles of biomechanical forces and non-coding RNAs in GIONFH. We used RAW264.7 cells and MC3T3E1 cells to verify the role of MALAT1/miR-329-5p/PRIP signalling using a dual luciferase reporter assay, qRT-PCR and Western blot analysis. The results demonstrated that MALAT1 and PRIP were up-regulated in the femoral head tissues of GIONFH rats, RAW264.7 cells, and MC3T3E1 cells exposed to dexamethasone (Dex). Knockdown of MALAT1 decreased PRIP expression in rats and cultured cells and rescued glucocorticoid-induced osteonecrosis of femoral head in rats. The dual luciferase reporter gene assay revealed a targeting relationship for MALAT1/miR-329-5p and miR-329-5p/PRIP in MC3T3E1 and RAW264.7 cells. In conclusion, MALAT1 played a vital role in the pathogenesis of GIONFH by binding to ('sponging') miR-329-5p to up-regulate PRIP. Also, biomechanical forces aggravated the pathogenesis of GIONFH through MALAT1/miR-329-5p/PRIP signalling.


Assuntos
Cabeça do Fêmur/patologia , Regulação da Expressão Gênica , Glucocorticoides/toxicidade , MicroRNAs/genética , Coativadores de Receptor Nuclear/metabolismo , Osteonecrose/patologia , RNA Longo não Codificante/genética , Animais , Fenômenos Biomecânicos , Células Cultivadas , Cabeça do Fêmur/efeitos dos fármacos , Cabeça do Fêmur/metabolismo , Masculino , Coativadores de Receptor Nuclear/genética , Osteonecrose/induzido quimicamente , Osteonecrose/genética , Osteonecrose/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Sensors (Basel) ; 15(11): 28456-71, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26569250

RESUMO

Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%.


Assuntos
Comportamento Alimentar/classificação , Comportamento Alimentar/fisiologia , Tecnologia de Fibra Óptica/instrumentação , Aprendizado de Máquina , Mastigação/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Ruminantes
5.
Best Pract Res Clin Rheumatol ; 38(1): 101966, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-39019747

RESUMO

Entheses have the challenging task of transferring biomechanical forces between tendon and bone, two tissues that differ greatly in composition and mechanical properties. Consequently, entheses are adapted to withstand these forces through continuous repair mechanisms. Locally specialized cells (mechanosensitive tenocytes) are crucial in the repair, physiologically triggering biochemical processes to maintain hemostasis. When repetitive forces cause "material fatigue," or trauma exceeds the entheses' repair capacity, structural changes occur, and patients become symptomatic. Clinical assessment of enthesopathies mainly depends on subjective reports by the patient and lacks specificity, especially in patients with central sensitization syndromes. Ultrasonography has been increasingly used to improve the diagnosis of enthesopathies. In this article, the literature on how biomechanical forces lead to entheseal inflammation, including factors contributing to differentiation into a "clinical enthesitis" state and the value of ultrasound to diagnose enthesopathies will be reviewed, as well as providing clues to overcome the pitfalls of imaging.


Assuntos
Entesopatia , Inflamação , Ultrassonografia , Humanos , Entesopatia/fisiopatologia , Entesopatia/diagnóstico por imagem , Inflamação/fisiopatologia , Inflamação/diagnóstico por imagem , Fenômenos Biomecânicos , Tendões/fisiopatologia , Tendões/diagnóstico por imagem
6.
Biomed Pharmacother ; 171: 116117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171243

RESUMO

Tumor angiogenesis is one of the typical hallmarks of tumor occurrence and development, and tumor neovascularization also exhibits distinct characteristics from normal blood vessels. As the number of cells and matrix inside the tumor increases, the biomechanical force is enhanced, specifically manifested as solid stress, fluid stress, stiffness, and topology. This mechanical microenvironment also provides shelter for tumors and intensifies angiogenesis, providing oxygen and nutritional support for tumor progression. During tumor development, the biomechanical microenvironment also emerges, which in turn feeds back to regulate the tumor progression, including tumor angiogenesis, and biochemical and biomechanical signals can regulate tumor angiogenesis. Blood vessels possess inherent sensitivity to mechanical stimuli, but compared to the extensive research on biochemical signal regulation, the study of the regulation of tumor neovascularization by biomechanical signals remains relatively scarce. Biomechanical forces can affect the phenotypic characteristics and mechanical signaling pathways of tumor blood vessels, directly regulating angiogenesis. Meanwhile, they can indirectly regulate tumor angiogenesis by causing an imbalance in angiogenesis signals and affecting stromal cell function. Understanding the regulatory mechanism of biomechanical forces in tumor angiogenesis is beneficial for better identifying and even taming the mechanical forces involved in angiogenesis, providing new therapeutic targets for tumor vascular normalization. Therefore, we summarized the composition of biomechanical forces and their direct or indirect regulation of tumor neovascularization. In addition, this review discussed the use of biomechanical forces in combination with anti-angiogenic therapies for the treatment of tumors, and biomechanical forces triggered delivery systems.


Assuntos
Neoplasias , Neovascularização Patológica , Humanos , Neovascularização Patológica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
7.
Artigo em Inglês | MEDLINE | ID: mdl-38010480

RESUMO

Atherosclerosis is a chronic inflammatory disease that is the underlying cause of cardiovascular disease which initiates from endothelial dysfunction from genetic and environmental risk factors, including biomechanical forces: blood flow. Endothelial cells (ECs) lining the inner arterial wall regions exposed to disturbed flow are prone to atherosclerosis development, whereas the straight regions exposed to stable flow are spared from the disease. These flow patterns induce genome- and epigenome-wide changes in gene expression in ECs. Through the sweeping changes in gene expression, disturbed flow reprograms ECs from athero-protected cell types under the stable flow condition to pro-atherogenic cell conditions. The pro-atherogenic changes induced by disturbed flow, in combination with additional risk factors such as hypercholesterolemia, lead to the progression of atherosclerosis. The flow-sensitive genes and proteins are critical in understanding the mechanisms and serve as novel targets for antiatherogenic therapeutics.

8.
Int J Stem Cells ; 16(3): 251-259, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37385634

RESUMO

Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.

9.
Biomedicines ; 10(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203616

RESUMO

Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.

10.
mSphere ; 7(4): e0021022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35913142

RESUMO

The discovery that biomechanical forces regulate microbial virulence was established with the finding that physiological low fluid shear (LFS) forces altered gene expression, stress responses, and virulence of the enteric pathogen Salmonella enterica serovar Typhimurium during the log phase. These log phase LFS-induced phenotypes were independent of the master stress response regulator, RpoS (σS). Given the central importance of RpoS in regulating stationary-phase stress responses of S. Typhimurium cultured under conventional shake flask and static conditions, we examined its role in stationary-phase cultures grown under physiological LFS. We constructed an isogenic rpoS mutant derivative of wild-type S. Typhimurium and compared the ability of these strains to survive in vitro pathogenesis-related stresses that mimic those encountered in the infected host and environment. We also compared the ability of these strains to colonize (adhere, invade, and survive within) human intestinal epithelial cell cultures. Unexpectedly, LFS-induced resistance of stationary-phase S. Typhimurium cultures to acid and bile salts stresses did not rely on RpoS. Likewise, RpoS was dispensable for stationary-phase LFS cultures to adhere to and survive within intestinal epithelial cells. In contrast, the resistance of these cultures to challenges of oxidative and thermal stresses, and their invasion into intestinal epithelial cells was influenced by RpoS. These findings expand our mechanistic understanding of how physiological fluid shear forces modulate stationary-phase S. Typhimurium physiology in unexpected ways and provide clues into microbial mechanobiology and nuances of Salmonella responses to microenvironmental niches in the infected host. IMPORTANCE Bacterial pathogens respond dynamically to a variety of stresses in the infected host, including physical forces of fluid flow (fluid shear) across their surfaces. While pathogens experience wide fluctuations in fluid shear during infection, little is known about how these forces regulate microbial pathogenesis. This is especially important for stationary-phase bacterial growth, which is a critical period to understand microbial resistance, survival, and infection potential, and is regulated in many bacteria by the general stationary-phase stress response protein RpoS. Here, we showed that, unlike conventional culture conditions, several stationary-phase Salmonella pathogenic stress responses were not impacted by RpoS when bacteria were cultured under fluid shear conditions relevant to those encountered in the intestine of the infected host. These findings offer new insight into how physiological fluid shear forces encountered by Salmonella during infection might impact pathogenic responses in unexpected ways that are relevant to their disease-causing ability.


Assuntos
Salmonella typhimurium , Fator sigma , Ácidos/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Salmonella typhimurium/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Virulência/genética
11.
Methods Mol Biol ; 2346: 35-50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32529600

RESUMO

Hematopoietic stem cells (HSCs) are used in the clinic to provide life-saving therapies to patients with a variety of hematological malignancies and disorders. Yet, serious deficiencies in our understanding of how HSCs develop and self-renew continue to limit our ability to make this therapy safer and more broadly available to those who have no available donor. Finding ways to expand HSCs and develop alternate sources of HSCs is an urgent priority. In the embryo, a critical transition in development of the blood system requires that newly emergent HSCs from the aorta-gonad-mesonephros (AGM) region migrate to the fetal liver where they aggressively self-renew and expand to numbers sufficient to sustain the adult long term. This process of homing to the fetal liver is orchestrated by intrinsic regulators such as epigenetic modifications to the genome, expression of transcription factors, and adhesion molecule presentation, as well as sensing of extrinsic factors like chemokines, cytokines, and other molecules. Due to technical limitations in manipulating the fetal tissue microenvironment, mechanisms mediating the homing and expansion process remain incompletely understood. Importantly, HSC development is strictly dependent upon forces created by the flow of blood, and current experimental methods make the study of biophysical cues especially challenging. In the protocol presented herein, we address these limitations by designing a biomimetic ex vivo microfluidic model of the fetal liver that enables monitoring of HSC homing to and interaction with fetal liver niches under flow and matrix elasticity conditions typical during embryonic development. This model can be easily customized for the study of key microenvironmental factors and biophysical cues that support HSC homing and expansion.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Fígado/metabolismo , Modelos Biológicos , Animais , Células-Tronco Hematopoéticas/citologia , Fígado/citologia , Fígado/embriologia , Camundongos
12.
Antioxid Redox Signal ; 31(12): 819-842, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30623676

RESUMO

Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.


Assuntos
Pneumopatias/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/fisiopatologia , Animais , Fenômenos Biomecânicos , Humanos , Pneumopatias/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Transdução de Sinais , Doenças Vasculares/metabolismo
13.
Biomaterials ; 173: 22-33, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29734018

RESUMO

Nanomaterials-based photodynamic therapy (PDT) has been used to treat malignant cells. However, the intrinsic impact of nanomaterials-based PDT on mechanical properties of intractable tumor cells is not well understood. Herein, we demonstrated that the mechanical forces of Taxol-resistant tumor cells were decreased by nanopurpurin-based PDT destructing extracellular matrix (ECM), increasing therapy sensitivity and repressing tumor metastasis. Combining FIRMS and general confocal microscope, we observed that the disruption of ECM by photodynamic reaction of P18-nanoconfined liposome (P18⊂L) induced a decrease of adhesion force and biomechanical properties of Taxol-resistant cells through the attenuation of actomyosin-based contractility thereby inhibiting cell migration and metastasis in vivo. Moreover, the destroyed ECM by P18⊂L PDT increased the therapy sensitivity. A clearer understanding of the effect of nanopurpurin-based PDT on mechanical properties and behaviors of intractable tumor cells will provide new and important basis for developing new therapeutic strategies.


Assuntos
Antraquinonas/farmacologia , Matriz Extracelular/efeitos dos fármacos , Nanoestruturas/química , Metástase Neoplásica/tratamento farmacológico , Células A549 , Actomiosina/metabolismo , Animais , Anoikis , Apoptose , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Matriz Extracelular/patologia , Feminino , Xenoenxertos , Humanos , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/patologia , Fotoquimioterapia
14.
Mater Sci Eng C Mater Biol Appl ; 62: 307-16, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952428

RESUMO

Finite element simulations of stent deployment were carried out by considering the intrinsic anisotropic behaviour, described by a Holzapfel-Gasser-Ogden (HGO) hyperelastic anisotropic model, of individual artery layers. The model parameters were calibrated against the experimental stress-stretch responses in both circumferential and longitudinal directions. The results showed that stent expansion, system recoiling and stresses in the artery layers were greatly affected by vessel anisotropy. Following deployment, deformation of the stent was also modelled by applying relevant biomechanical forces, i.e. in-plane bending and radial compression, to the stent-artery system, for which the residual stresses generated during deployment were particularly accounted for. Residual stresses were found to have a significant influence on the deformation of the system, resulting in a re-distribution of stresses and a change of the system flexibility. The results were also utilised to interpret the mechanical performance of stent after deployment.


Assuntos
Modelos Teóricos , Stents , Anisotropia , Análise de Elementos Finitos , Estresse Mecânico
15.
Nanomedicine (Lond) ; 12(12): 1355-1358, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28524805
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa