Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Pharm Res ; 41(5): 877-890, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538971

RESUMO

OBJECTIVE: To utilize the global system analysis (GSA) in oral absorption modeling to gain a deeper understanding of system behavior, improve model accuracy, and make informed decisions during drug development. METHODS: GSA was utilized to give insight into which drug substance (DS), drug product (DP), and/or physiological parameter would have an impact on peak plasma concentration (Cmax) and area under the curve (AUC) of dipyridamole as a model weakly basic compound. GSA guided the design of in vitro experiments and oral absorption risk assessment using FormulatedProducts v2202.1.0. The solubility and precipitation profiles of dipyridamole in different bile salt concentrations were measured. The results were then used to build a mechanistic oral absorption model. RESULTS: GSA warranted further investigation into the precipitation kinetics and its link to the levels of bile salt concentrations. Mechanistic modeling studies demonstrated that a precipitation-integrated modeling approach appropriately predicted the mean plasma profiles, Cmax, and AUC from the clinical studies. CONCLUSIONS: This work shows the value of GSA utilization in early development to guide in vitro experimentation and build more confidence in identifying the critical parameters for the mathematical models.


Assuntos
Dipiridamol , Modelos Biológicos , Solubilidade , Dipiridamol/farmacocinética , Dipiridamol/administração & dosagem , Dipiridamol/química , Administração Oral , Humanos , Ácidos e Sais Biliares/química , Área Sob a Curva , Absorção Intestinal
2.
Biopharm Drug Dispos ; 44(2): 147-156, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36951570

RESUMO

Pediatric drugs knowledge still leaves several gaps to be filled, all the while many biopharmaceutic properties applied to adults do not work in pediatrics. The solubility in many cases is extrapolated to pediatrics; however, sometimes it may not represent the real scenario. In this context, the aim of this study was to assess the possibility of the extrapolation of the solubility data assumed for adults to children aged 2-12 years using lamotrigine (LTG) as a model. LTG showed that its solubility is dependent on the pH of the medium, no precipitate formation was seen, and biomimetic media showed a greater capacity to solubilize it. Based on the dose number (D0 ) in adults, the LTG was soluble in acidic pH media and poorly soluble in neutral to basic. Similar behavior was found in conditions which mimic children aged 10-12 years at a dose of 5 and 15 mg/kg. The D0 for 5-year-old children at a dose of 15 mg/kg showed different behaviors between biorelevant and pharmacopeial buffers media. For children aged 2-3 years, LTG appeared to be poorly soluble under both gastric and intestinal conditions. Solubility was dependent on the volume of fluid calculated for each age group, and this may impact the development of better pharmaceutical formulations for this population, better pharmacokinetic predictions in tools as PBPK, and physiologically-based biopharmaceutics modeling, greater accuracy in the justifications for biowaiver, and many other possibilities.


Assuntos
Biomimética , Absorção Intestinal , Adulto , Humanos , Criança , Pré-Escolar , Solubilidade , Lamotrigina , Absorção Intestinal/fisiologia , Administração Oral , Modelos Biológicos , Simulação por Computador , Concentração de Íons de Hidrogênio
3.
AAPS PharmSciTech ; 24(5): 121, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173520

RESUMO

Poorly water-soluble weak base molecules such as cinnarizine often exhibit pH-dependent solubility within the gastrointestinal tract. This means that their solubility can be influenced by the pH of the surrounding environment, and this can affect their oral absorption. The differential pH solubility between the fasted-state stomach and intestine is an important consideration when studying the oral absorption of cinnarizine. Cinnarizine has moderate permeability and is known to exhibit supersaturation and precipitation in fasted-state simulated intestinal fluid (FaSSIF), which can significantly impact its oral absorption. The present work is aimed at studying the precipitation behavior of cinnarizine in FaSSIF using biorelevant in vitro tools and GastroPlus® modeling, to identify the factors contributing to the observed variability in clinical plasma profiles. The study found that cinnarizine demonstrated variable precipitation rates under different bile salt concentrations, which could impact the concentration of the drug available for absorption. The results also showed that a precipitation-integrated modeling approach accurately predicted the mean plasma profiles from the clinical studies. The study concluded that intestinal precipitation may be one of the factors contributing to the observed variability in Cmax but not the AUC of cinnarizine. The study further suggests that the integration of experimental precipitation results representing a wider range of FaSSIF conditions would increase the probability of predicting some of the observed variability in clinical results. This is important for biopharmaceutics scientists, as it can help them evaluate the risk of in vivo precipitation impacting drug and/or drug product performance.


Assuntos
Cinarizina , Cinarizina/metabolismo , Administração Oral , Absorção Intestinal , Intestinos , Trato Gastrointestinal , Solubilidade , Modelos Biológicos
4.
Mol Pharm ; 19(4): 1146-1159, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35319221

RESUMO

Understanding the supersaturation and precipitation behavior of poorly water-soluble compounds in vivo and the impact on oral absorption is critical to design consistently performing products with optimized bioavailability. Weakly basic compounds are of particular importance in this context since they have an inherent tendency to undergo supersaturation in vivo upon exit from the stomach and entry into the small intestine because of their pH-dependent solubility. To understand and probe potential in vivo variability of supersaturating systems, rigorous understanding of compound physical properties and phase behavior landscape is essential. Herein, we extensively characterize the solution phase behavior of a model, poorly soluble and weakly basic compound, posaconazole. Phase boundaries for crystal-solution and amorphous-solution were established as a function of pH, allowing possible phase transformations, namely, crystallization or liquid-liquid phase separation, to be mapped for different initial doses and fluid volumes. Endogenous surfactants including sodium taurocholate, lecithin, glycerol monooleate, and sodium oleate in biorelevant media significantly extended the phase boundaries due to solubilization, to an extent that was dependent on the concentration of the surface-active agents. The nucleation induction time of posaconazole was much shorter in biorelevant media in comparison to the corresponding buffer solution, with two distinct regions observed in all media that could be attributed to a change in the nucleation mechanism at high and low supersaturation. The presence of undissolved nanocrystals accelerated the desupersaturation. This work enhances our understanding of biorelevant factors impacting precipitation kinetics, which might affect absorption in vivo. It is expected that findings from this study with posaconazole could be broadly applicable to other weakly basic compounds, after taking into consideration differences in pKa, solubility, and molecular structure.


Assuntos
Tensoativos , Água , Cristalização , Cinética , Solubilidade
5.
AAPS PharmSciTech ; 23(5): 113, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35441281

RESUMO

Dissolution is a pivotal tool for oral formulations. Dissolution could be used to either reduce the risk of product failure through quality control or predict and understand in vivo performance of drug formulations. The latter is always challenging because multiple factors such as selection of media, gastrointestinal components, physiological factors, consideration of fasted and fed state are involved. Previously published dissolution methods such as one-step dissolution in individual simulated gastric fluid, simulated intestinal fluid, or phosphate buffer saline did not signify the realistic gastrointestinal transit effect. Docetaxel (DTX), a poorly water-soluble drug, is commercially available only as injectable dosage forms, and thus many publications studied the development of oral DTX formulations. In our previous report, we developed oral lipid-based DTX granules that showed higher oral absorption in rats compared to DTX powder. However, one-step dissolution in simulated gastric fluid showed no difference between DTX granules and DTX powder. Therefore, the present study aimed to develop new two-step biorelevant dissolution methods for DTX oral formulations. In the study, new two-step biorelevant dissolution methods in fasted or fed states with pancreatin were developed and compared with other previously reported dissolution methods. The new two-step biorelevant dissolution methods successfully discriminated the difference of dissolution between DTX granules and DTX powder, which reflected the in vivo difference of absorption of these two formulations. Moreover, food effects were confirmed for DTX. The new dissolution methods have the potential to be used to predict and understand in vivo performance of oral solid dosage forms.


Assuntos
Jejum , Administração Oral , Animais , Docetaxel , Composição de Medicamentos , Pós , Ratos , Solubilidade
6.
Drug Dev Ind Pharm ; 46(10): 1578-1588, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32808565

RESUMO

Donepezil hydrochloride is one of the most prescribed anti-Alzheimer's drugs, despite being available for more than two decades, chromatographic methods for the quantification of the drug in biorelevant media that mimics pH physiological conditions in vivo (pH 1.2, 4.5, and 6.8) are not available in the literature. These media are used in the dissolution test, an important tool, for registration and quality control of medicines. Considering the need for methods with this purpose, this work aimed to develop and validate a sustainable UPLC-UV method for quantification of donepezil hydrochloride in tablets, specifically on assay and dissolution profile, with reduced environmental impacts. The proposed method has a run time of 2 min and requires for each run, only 0.8 mL of solvents, providing excellent green analysis. The method proved to be selective, linear, precise, accurate, robust in the range of 2-14 µg/mL. Three products (reference, similar, and generic) were analyzed and showed very rapid dissolution. The average content varied from 100.2 ± 0.6% to 109.5 ± 2.1%. Using dissolution efficiency (DE), the drug release profiles were compared in different biorelevant media.


Assuntos
Donepezila , Liberação Controlada de Fármacos , Controle de Qualidade , Solubilidade , Comprimidos/química
7.
Drug Dev Ind Pharm ; 46(12): 2051-2060, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124918

RESUMO

OBJECTIVE: This study aimed to systematically explore compositional effects for a series of lipid systems, on the in vitro drug solubilization and in vivo bioavailability of three poorly water-soluble drugs with different physico-chemical properties. SIGNIFICANCE: While many lipid-based drug products have successfully reached the market, there is still a level of uncertainty on the design guidelines for such drug products with limited understanding on the influence of composition on in vitro and in vivo performance. METHODS AND RESULTS: Lipid-based drug delivery systems were prepared using either single excipient systems based on partially digested triglycerides (i.e. mono- and/or di-glycerides) or increasingly complex systems by incorporating surfactants and/or triglycerides. These lipid systems were evaluated for both in vitro and in vivo behavior. Results indicated that simple single component long chain lipid systems are more beneficial for the absorption of the weak acid celecoxib and the weak base cinnarizine compared to equivalent single component medium chain lipid systems. Similarly, a two-component system produced by incorporating small amount of hydrophilic surfactant yields similar overall pharmacokinetic effects. The lipid drug delivery systems based on medium chain lipid excipients improved the in vivo exposure of the neutral drug JNJ-2A. The higher in vivo bioavailability of long chain lipid systems compared to medium chain lipid systems was in agreement with in vitro dilution and dispersion studies for celecoxib and cinnarizine. CONCLUSIONS: The present study demonstrated the benefits of using mono-/di-glycerides as single component excipients in LBDDS to streamline formulation screening and improve oral bioavailability for the three tested poorly water-soluble drugs.


Assuntos
Excipientes , Glicerídeos/química , Lipídeos/química , Preparações Farmacêuticas , Administração Oral , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Solubilidade
8.
Pharm Dev Technol ; 25(1): 89-99, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31583925

RESUMO

Candesartan cilexetil (CC) is a poorly soluble antihypertensive drug with in vivo absorption limited by its low aqueous solubility. Aiming to generate CC supersaturation as strategy to improve its absorption and bioavailability, amorphous solid dispersions (ASDs) of CC with hydroxypropylmethylcellulose acetate succinate type M (HPMCAS M) were developed and evaluated by in vitro and in vivo techniques. The ASDs were characterized by several solid-state techniques and evaluated regarding the supersaturation generation and maintenance under non-sink conditions in biorelevant medium. Stability studies at different storage conditions and in vivo pharmacodynamics studies were performed for the best formulation. The ASD developed presented appropriate drug amorphization, confirmed by solid state characterization, and CC apparent solubility increases around 85 times when compared to the pure crystalline drug. Supersaturation was maintained for up to 24 h in biorelevant medium. The in vivo pharmacodynamics studies revealed that ASD of CC with the polymer HPMCAS M presented an onset of action about four times faster when compared to the pure crystalline drug. The CC-HPMCAS ASD were successfully developed and demonstrated good physical stability under different storage conditions as well as promising results that indicated the ASD potential for improvement of CC biopharmaceutical properties.


Assuntos
Benzimidazóis/química , Compostos de Bifenilo/química , Tetrazóis/química , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Compostos de Bifenilo/farmacocinética , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Metilcelulose/análogos & derivados , Metilcelulose/química , Polímeros/química , Ratos , Ratos Wistar , Solubilidade/efeitos dos fármacos , Tetrazóis/farmacocinética
9.
AAPS PharmSciTech ; 21(2): 47, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900686

RESUMO

This study investigated the dissolution behavior of BCS class II ionizable weak base Saquinavir and its mesylate salt in the multi-compartment transfer setup employing different composition of dissolution media. The dissolution behavior of Saquinavir was studied by using a two-compartment transfer model representing the transfer of drug from the stomach (donor compartment) to the upper intestine (acceptor compartment). Various buffers like phosphate, bicarbonate, FaSSIF, and FeSSIF were employed. The dissolution was also studied in the concomitant presence of the additional solute, i.e., Quercetin. Further, the dissolution profiles of Saquinavir and its mesylate salt were simulated by GastroPlusTM, and the simulated dissolution profiles were compared against the experimental ones. The formation of in situ HCl salt and water-soluble amorphous phosphate aggregates was confirmed in the donor and acceptor compartments of the transfer setup, respectively. As the consequence of the lower solubility product of HCl salt of Saquinavir, the solubility advantage of mesylate salt was vanished leading to the lower than the predicted dissolution in the acceptor compartment. However, the formation of water-soluble aggregates in the presence of the phosphate salts was observed leading to the higher than the predicted dissolution of the free base in the transfer setup. Interestingly, the formation of such water-soluble aggregates was found to be hindered in the concomitant presence of an ionic solute resulting in the lower dissolution rates. The in situ generation of salts and aggregates in the transfer model lead to the inconsistent prediction of dissolution profiles by GastroPlusTM.


Assuntos
Inibidores do Citocromo P-450 CYP3A/química , Saquinavir/química , Administração Oral , Soluções Tampão , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Solubilidade , Estômago
10.
AAPS PharmSciTech ; 21(7): 282, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051713

RESUMO

In vitro dissolution testing conditions that reflect and predict in vivo drug product performance are advantageous, especially for the development of paediatric medicines, as clinical testing in this population is hindered by ethical and technical considerations. The aim of this study was to develop an in vivo predictive dissolution test in order to investigate the impact of medicine co-administration with soft food and drinks on the dissolution performance of a poorly soluble compound. Relevant in vitro dissolution conditions simulating the in vivo gastrointestinal environment of infants were used to establish in vitro-in vivo relationships with corresponding in vivo data. Dissolution studies of montelukast formulations were conducted with mini-paddle apparatus on a two-stage approach: infant fasted-state simulated gastric fluid (Pi-FaSSGF; for 1 h) followed by either infant fasted-state or infant fed-state simulated intestinal fluid (FaSSIF-V2 or Pi-FeSSIF, respectively; for 3 h). The dosing scenarios tested reflected in vivo paediatric administration practices: (i.) direct administration of formulation; (ii.) formulation co-administered with vehicles (formula, milk or applesauce). Drug dissolution was significantly affected by co-administration of the formulation with vehicles compared with after direct administration of the formulation. Montelukast dissolution from the granules was significantly higher under fed-state simulated intestinal conditions in comparison with the fasted state and was predictive of the in vivo performance when the granules are co-administered with milk. This study supports the potential utility of the in vitro biorelevant dissolution approach proposed to predict in vivo formulation performance after co-administration with vehicles, in the paediatric population.


Assuntos
Acetatos/administração & dosagem , Acetatos/química , Antiasmáticos/administração & dosagem , Antiasmáticos/química , Quinolinas/administração & dosagem , Quinolinas/química , Animais , Área Sob a Curva , Bebidas , Ciclopropanos , Composição de Medicamentos , Jejum , Alimentos , Humanos , Lactente , Leite , Veículos Farmacêuticos , Solubilidade , Sulfetos
11.
Mol Pharm ; 16(12): 5042-5053, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31638397

RESUMO

Supersaturating formulations are increasingly being used to improve the absorption of orally administered poorly water-soluble drugs. To better predict outcomes in vivo, we must be able to accurately determine the degree of supersaturation in complex media designed to provide a surrogate for the gastrointestinal environment. Herein, we demonstrate that relying on measurements based on consideration of the total dissolved concentration leads to underestimation of supersaturation and consequently membrane transport rates. Crystalline and amorphous solubilities of two compounds, atazanavir and posaconazole, were evaluated in six different media. Concurrently, diffusive flux measurements were performed in a side-by-side diffusion cell to determine the activity-based supersaturation by evaluating membrane transport rates at the crystalline and amorphous solubilities. Solubility values were found to vary in each medium because of different solubilization capacities. Concentration-based supersaturation ratios were also found to vary for the different media. Activity-based measurements, however, were largely independent of the medium, leading to relatively constant values for the estimated supersaturation. These findings have important consequences for modeling and prediction of supersaturation impact on the absorption rate as well as for better defining the thermodynamic driving force for crystallization in complex media.


Assuntos
Sulfato de Atazanavir/administração & dosagem , Sulfato de Atazanavir/química , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Líquidos Corporais/metabolismo , Triazóis/administração & dosagem , Triazóis/química , Química Farmacêutica/métodos , Cristalização , Difusão , Humanos , Cinética , Solubilidade , Termodinâmica
12.
Pharm Res ; 36(12): 174, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31667638

RESUMO

PURPOSE: The overall goal of this study was to investigate the dissolution performance and crystallization kinetics of amorphous solid dispersions (ASDs) of a weakly basic compound, posaconazole, dispersed in a pH-sensitive polymeric matrix consisting of hydroxypropyl methylcellulose acetate succinate (HPMC-AS), using fasted-state simulated media. METHODS: ASDs with three different drug loadings, 10, 25 and 50 wt.%, and the commercially available tablets were exposed to acidic media (pH 1.6), followed by transfer to, and dissolution in, intestinal media (pH 6.5). Parallel single stage dissolution experiments in only simulated intestinal media were also performed to better understand the impact of the gastric stage. Different analytical methods, including nanoparticle tracking analysis, powder x-ray diffraction, second harmonic generation and two-photon excitation ultraviolet fluorescence microscopy, were used to characterize the phase behavior of these systems at different stages of dissolution. RESULTS: Results revealed that all ASDs exhibited some degree of drug release upon suspension in acidic media, and were also vulnerable to matrix crystallization. Upon transfer to intestinal media conditions, supersaturation was observed. This was short-lived for some dispersions due to the release of the crystals formed in the acid immersion stage which acted as seeds for crystal growth. Lower drug loading ASDs also exhibited transient formation of amorphous nanodroplets prior to crystallization. CONCLUSIONS: This work emphasizes the significance of assessing the impact of pH change on dissolution and provides a fundamental basis of understanding the phase behavior kinetics of ASDs of weakly basic drugs when formulated with pH sensitive polymers.


Assuntos
Portadores de Fármacos/química , Metilcelulose/análogos & derivados , Triazóis/química , Cristalização , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Cinética , Metilcelulose/química , Nanopartículas/química , Tamanho da Partícula , Transição de Fase , Solubilidade , Temperatura
13.
Biopharm Drug Dispos ; 40(3-4): 121-134, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30891805

RESUMO

BACKGROUND: Food may affect the oral absorption of drugs. PURPOSE: The aim of the present study was to investigate the influence of food on the oral absorption of clarithromycin by evaluating the effect of media parameters, such as pH, bile secretions and food composition, on the release of the drug from immediate release tablets, using in vitro and in silico assessments. METHOD: The solubility, disintegration and dissolution profiles of clarithromycin 500 mg immediate release tablets in compendial media with/without the addition of a homogenized FDA meal as well as in biorelevant simulated intestinal media mimicking fasting and fed conditions were determined. These in vitro data were input to GastroPlus™, which was used for developing a physiological absorption model capable of anticipating the effect of food on clarithromycin absorption. Level A in vitro-in vivo linear correlations were established using a mechanistic absorption modelling based deconvolution approach. RESULTS: The pH of the media has a profound effect on clarithromycin solubility, tablet disintegration and drug release. Clarithromycin has lower solubility in biorelevant media compared with other media, due to complex formation with bile salts. Clarithromycin tablets exhibited prolonged disintegration times and reduced dissolution rates in the presence of the standard FDA meal. The simulation model predicted no significant food effect on the oral bioavailability of clarithromycin. The developed IVIVC model considered SIF, acetate buffer and FaSSIF media to be the most relevant from the physiological standpoint. CONCLUSION: The intake of a standard FDA meal may have no significant effect on the oral bioavailability of clarithromycin immediate release tablet.


Assuntos
Antibacterianos/farmacocinética , Claritromicina/farmacocinética , Interações Alimento-Droga , Modelos Biológicos , Administração Oral , Antibacterianos/administração & dosagem , Antibacterianos/química , Claritromicina/administração & dosagem , Claritromicina/química , Simulação por Computador , Liberação Controlada de Fármacos , Jejum/metabolismo , Suco Gástrico/química , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Secreções Intestinais/química , Solubilidade , Comprimidos
14.
Mol Pharm ; 15(6): 2423-2436, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29746138

RESUMO

Study methodologies of supersaturated state are fast developing as pharmaceutical industry is adopting supersaturating drug delivery systems (SDDS) to overcome the solubility issue of drugs. The "parachute" of sobriquet "spring-and-parachute", which indicates delayed or slowed intraluminal precipitation of drug from SDDS, is of immense importance to formulation scientists since optimal attainment of "parachute" governs the success of SDDS in stabilizing supersaturated state that ensues in enhancement of bioavailability. The studies carried out so far for precipitation assessments have ignored the stochastic nature of nucleation and lack absolute mathematical approach. In the current study, the supersaturated state has been studied in a quantitative manner through microarray plate method with application of the classical nucleation theory (CNT) equation for determination of precipitation kinetics. This microarray plate method is an attempt to pursue the principle of miniaturization in supersaturation assays and involves comprehensive measurements that allows for accounting of the stochastic nature of nucleation. Overcoming the drawbacks of reproducibility and greater material requirement of existing methods, this study aims to quantify the rate of in vivo precipitation through understanding of precipitation profile of model drug, celecoxib, in biorelevant media. Quantification of nucleation rates was made through CNT using tailored criteria and visually represented through temporal precipitation distribution (TPD) plots. Supersaturation stability was also compared through metastable zone width (MSZW). Optical microscopy helped in visualizing the dynamics of precipitation, while solid state characterization assisted in understanding the nature of obtained precipitates. This study identified the short-lived supersaturation of celecoxib and its tendency to precipitate under fasted conditions, which can be correlated with in vivo behavior for formulation design.


Assuntos
Celecoxib/farmacocinética , Precipitação Química , Sistemas de Liberação de Medicamentos/métodos , Celecoxib/química , Química Farmacêutica/instrumentação , Química Farmacêutica/métodos , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Reprodutibilidade dos Testes , Solubilidade
15.
Mol Pharm ; 15(7): 2633-2645, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29799758

RESUMO

The aim of the presented retrospective analysis was to verify whether a previously proposed Janssen Biopharmaceutical Classification System (BCS)-like decision tree, based on preclinical bioavailability data of a solution and suspension formulation, would facilitate informed decision making on the clinical formulation development strategy. In addition, the predictive value of (in vitro) selection criteria, such as solubility, human permeability, and/or a clinical dose number (Do), were evaluated, potentially reducing additional supporting formulation bioavailability studies in animals. The absolute ( Fabs,sol) and relative ( Frel, susp/sol) bioavailability of an oral solution and suspension, respectively, in rat or dog and the anticipated BCS classification were analyzed for 89 Janssen compounds with 28 of these having Frel,susp/sol and Fabs,sol in both rat and dog at doses around 10 and 5 mg/kg, respectively. The bioavailability outcomes in the dog aligned well with a BCS-like classification based upon the solubility of the active pharmaceutical ingredient (API) in biorelevant media, while the alignment was less clear for the bioavailability data in the rat. A retrospective analysis on the clinically tested formulations for a set of 12 Janssen compounds confirmed that the previously proposed animal bioavailability-based decision tree facilitated decisions on the oral formulation type, with the dog as the most discriminative species. Furthermore, the analysis showed that based on a Do for a standard human dose of 100 mg in aqueous and/or biorelevant media, a similar formulation type would have been selected compared to the one suggested by the animal data. However, the concept of a Do did not distinguish between solubility enhancing or enabling formulations and does not consider the API permeability, and hence, it produces the risk of slow and potentially incomplete oral absorption of an API with poor intestinal permeability. In cases where clinical dose estimations are available early in development, the preclinical bioavailability studies and dose number calculations, used to guide formulation selection, may be performed at more relevant doses instead of the proposed standard human dose. It should be noted, however, that unlike in late development, there is uncertainty on the clinical dose estimated in the early clinical phases because that dose is usually only based on in vitro and/or in vivo animal pharmacology models, or early clinical biomarker information. Therefore, formulation strategies may be adjusted based on emerging data supporting clinical doses. In summary, combined early information on in vitro-assessed API solubility and permeability, preclinical suspension/solution bioavailability data in relation to the intravenous clearance, and metabolic pathways of the API can strengthen formulation decisions. However, these data may not always fully distinguish between conventional (e.g., to be taken with food), enhancing, and enabling formulations. Therefore, to avoid overinvestment in complex and expensive enabling technologies, it is useful to evaluate a conventional and solubility (and/or permeability) enhancing formulation under fasted and fed conditions, as part of a first-in-human study or in a subsequent early human bioavailability study, for compounds with high Do, a low animal Frel,susp/sol, or low Fabs,sol caused by precipitation of the solubilized API.


Assuntos
Tomada de Decisões , Desenvolvimento de Medicamentos/organização & administração , Modelos Biológicos , Farmacocinética , Administração Oral , Animais , Árvores de Decisões , Cães , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/economia , Humanos , Absorção Intestinal/fisiologia , Camundongos , Modelos Animais , Ratos , Estudos Retrospectivos , Solubilidade , Especificidade da Espécie
16.
Pharm Res ; 35(8): 158, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29916053

RESUMO

PURPOSE: The overall purpose of this study was to understand the impact of different biorelevant media types on solubility and crystallization from supersaturated solutions of model compounds (atazanavir, ritonavir, tacrolimus and cilnidipine). The first aim was to understand the influence of the lecithin content in FaSSIF. As the human intestinal fluids (HIFs) contain a variety of bile salts in addition to sodium taurocholate (STC), the second aim was to understand the role of these bile salts (in the presence of lecithin) on solubility and crystallization from supersaturated solutions, METHODS: To study the impact of lecithin, media with 3 mM STC concentration but varying lecithin concentration were prepared. To test the impact of different bile salts, a new biorelevant medium (Composite-SIF) with a composition simulating that found in the fasted HIF was prepared. The crystalline and amorphous solubility was determined in these media. Diffusive flux measurements were performed to determine the true supersaturation ratio at the amorphous solubility of the compounds in various media. Nucleation induction times from supersaturated solutions were measured at an initial concentration equal to the amorphous solubility (equivalent supersaturation) of the compound in the given medium. RESULTS: It was observed that, with an increase in lecithin content at constant STC concentration (3 mM), the amorphous solubility of atazanavir increased and crystallization was accelerated. However, the crystalline solubility remained fairly constant. Solubility values were higher in FaSSIF compared to Composite-SIF. Longer nucleation induction times were observed for atazanavir, ritonavir and tacrolimus in Composite-SIF compared to FaSSIF at equivalent supersaturation ratios. CONCLUSIONS: This study shows that variations in the composition of SIF can lead to differences in the solubility and crystallization tendency of drug molecules, both of which are critical when evaluating supersaturating systems.


Assuntos
Secreções Intestinais/química , Lecitinas/química , Preparações Farmacêuticas/química , Algoritmos , Sulfato de Atazanavir/química , Bloqueadores dos Canais de Cálcio/química , Cristalização , Di-Hidropiridinas/química , Inibidores da Protease de HIV/química , Humanos , Imunossupressores/química , Ritonavir/química , Solubilidade , Soluções/química , Tacrolimo/química
17.
Chem Biodivers ; 15(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29427367

RESUMO

In this study, dissolution behaviour of 1,2,4-thiadiazole derivative (1-[5-(3-chloro-phenylamino)-1,2,4-thiadiazol-3-yl]-propan-2-ol) displaying an anti-Alzheimer activity was examined in biorelevant media such as Simulated Gastric Fluid (SGF, pH 1.2), Fasted State Simulated Gastric Fluid (FaSSGF, pH 1.6) and Fasted State Simulated Intestinal Fluid (FaSSIF, pH 6.5). It was found that solubility and dissolution rate of 1,2,4-thiadiazole derivative under consideration are not strongly dependent on pH, whereas these parameters are significantly affected by the buffer composition. Dissolution was found to be more effective in buffers composed of the surfactant micelles. It was demonstrated that considerable increase in solubility and dissolution rate in SGF is achieved through the interaction of 1,2,4-thiadiazole derivative with the micelles of sodium dodecyl sulfate. On the contrary, CMC of sodium taurochalate was shifted in the presence of 1,2,4-thiadiazole derivative, therefore, dissolution process is not so efficient in FaSSIF. Interactions occurring between 1,2,4-thiadiazole derivative and the components of biorelevant media were investigated in detail by means of UV/VIS spectroscopy, 1 H-NMR and phase solubility methods.


Assuntos
Doença de Alzheimer/prevenção & controle , Desenho de Fármacos , Tiadiazóis/farmacologia , Micelas , Estrutura Molecular , Dodecilsulfato de Sódio/química , Solubilidade , Ácido Taurocólico/química , Tiadiazóis/síntese química , Tiadiazóis/química
18.
AAPS PharmSciTech ; 19(7): 2851-2858, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29872977

RESUMO

Physiologically based absorption modeling has been attracting increased attention to study the interactions of weakly basic drug compounds with acid-reducing agents like proton-pump inhibitors and H2 blockers. Recently, standardized gastric and intestinal biorelevant media to simulate the achlorhydric and hypochlorhydric stomach were proposed and solubility and dissolution data for two model compounds were generated. In the current manuscript, for the first time, we report the utility of these recently proposed biorelevant media as input into physiologically based absorption modeling. Where needed, data collected with the biorelevant gastrointestinal transfer (BioGIT) system were used for informing the simulations in regard to the precipitation kinetics. Using two model compounds, a HCl salt and a semi-fumarate co-crystal which as expected dissolve to a greater extent in these media (and in gastric and intestinal human aspirates) compared to what the pH-solubility profile of the free form would suggest, we demonstrate successful description of the plasma concentration profiles and correctly predicted the lack of significant interaction after administration with pantoprazole or famotidine, respectively. Thus, the data reported in this manuscript represent an initial step towards defining biorelevant input for such simulations on interactions with acid-reducing agents.


Assuntos
Análise de Dados , Absorção Gastrointestinal/efeitos dos fármacos , Ácido Clorídrico/metabolismo , Modelos Biológicos , Pioglitazona/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Absorção Fisiológica/fisiologia , Animais , Absorção Gastrointestinal/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Humanos , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Cinética , Pioglitazona/química , Solubilidade , Suínos
19.
Mol Pharm ; 14(4): 1251-1263, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28186768

RESUMO

In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration-dependent. Our studies herein indicate that bile acid modifications occurring at the host-microbe interface could lead to alterations in the capacity of intestinal bile salt micelles to solubilize drugs, providing impetus to consider the gut microbiota in the drug absorption process. In the clinical setting, disruption of the gut microbial ecosystem, through disease or antibiotic treatment, could transform the bile acid pool with potential implications for drug absorption and bioavailability.


Assuntos
Ácidos e Sais Biliares/química , Bile/química , Microbioma Gastrointestinal/fisiologia , Preparações Farmacêuticas/química , Disponibilidade Biológica , Humanos , Micelas , Solubilidade , Esteroides/química , Ácido Taurocólico/química , Ácido Taurodesoxicólico/química , Água/química
20.
Drug Dev Ind Pharm ; 43(1): 79-88, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27487184

RESUMO

The effects of different formulations and processes on inducing and maintaining the supersaturation of ternary solid dispersions of ezetimibe (EZ) in two biorelevant media fasted-state simulated intestinal fluid (FaSSIF) and fasted-state simulated gastric fluid (FaSSGF) at different temperatures (25 °C and 37 °C) were investigated in this work. Ternary solid dispersions of EZ were prepared by adding polymer PVP-K30 and surfactant poloxamer 188 using melt-quenching and spray-drying methods. The resulting solid dispersions were characterized using scanning electron microscopy, differential scanning calorimetry (DSC), modulated DSC, powder X-ray diffraction and Fourier transformation infrared spectroscopy. The dissolution of all the ternary solid dispersions was tested in vitro under non-sink conditions. All the prepared solid dispersions were amorphous in nature. In FaSSIF at 25 °C, the melt-quenched (MQ) solid dispersions of EZ were more soluble than the spray-dried (SD) solid dispersions and supersaturation was maintained. However, at 37 °C, rapid and variable precipitation behavior was observed for all the MQ and SD formulations. In FaSSGF, the melting method resulted in better solubility than the spray-drying method at both temperatures. Ternary solid dispersions show potential for improving solubility and supersaturation. However, powder dissolution experiments of these solid dispersions of EZ at 25 °C may not predict the supersaturation behavior at physiologically relevant temperatures.


Assuntos
Anticolesterolemiantes/síntese química , Líquidos Corporais/química , Precipitação Química , Química Farmacêutica/métodos , Ezetimiba/síntese química , Anticolesterolemiantes/farmacocinética , Líquidos Corporais/efeitos dos fármacos , Líquidos Corporais/metabolismo , Ezetimiba/farmacocinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa