Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Mol Ther ; 32(4): 1033-1047, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341613

RESUMO

As the world continues to confront severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV) is also causing severe respiratory illness in millions of infants, elderly individuals, and immunocompromised people globally. Exacerbating the situation is the fact that co-infection with multiple viruses is occurring, something which has greatly increased the clinical severity of the infections. Thus, our team developed a bivalent vaccine that delivered mRNAs encoding SARS-CoV-2 Omicron spike (S) and RSV fusion (F) proteins simultaneously, SF-LNP, which induced S and F protein-specific binding antibodies and cellular immune responses in BALB/c mice. Moreover, SF-LNP immunization effectively protected BALB/c mice from RSV infection and hamsters from SARS-CoV-2 Omicron infection. Notably, our study pointed out the antigenic competition problem of bivalent vaccines and provided a solution. Overall, our results demonstrated the potential of preventing two infectious diseases with a single vaccine and provided a paradigm for the subsequent design of multivalent vaccines.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Humanos , Camundongos , Lactente , Cricetinae , Animais , Idoso , Vacinas de mRNA , Vacinas Combinadas , Anticorpos Antivirais , Vacinas contra Vírus Sincicial Respiratório/genética , Proteínas Virais de Fusão/genética , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Neutralizantes
2.
J Infect Dis ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848312

RESUMO

BACKGROUND: Bivalent mRNA vaccines, designed to combat emerging SARS-CoV-2 variants, incorporate ancestral strains and a new variant. Our study assessed the immune response in previously vaccinated individuals of the Swiss HIV Cohort Study (SHCS) and the Swiss Transplant Cohort Study (STCS) following bivalent mRNA vaccination. METHODS: Eligible SHCS and STCS participants received approved bivalent mRNA SARS-CoV-2 vaccines (mRNA-1273.214 or BA.1-adapted BNT162b2) within clinical routine. Blood samples were collected at baseline, 4 weeks, 8 weeks, and 6 months post vaccination. We analyzed the proportion of participants with anti-spike protein antibody response ≥1642 units/ml (indicating protection against SARS-CoV-2 infection), and in a subsample T-cell response (including mean concentrations), stratifying results by cohorts and population characteristics. RESULTS: In SHCS participants, baseline anti-spike antibody concentrations ≥1642 were observed in 87% (96/112), reaching nearly 100% at follow-ups. Among STCS participants, 58% (35/60) had baseline antibodies ≥1642, increasing to 80% at 6 months. Except for lung transplant recipients, all participants showed a five-fold increase in geometric mean antibody concentrations at 4 weeks and a reduction by half at 6 months. At baseline, T-cell responses were positive in 96% (26/27) of SHCS participants and 36% (16/45) of STCS participants (moderate increase to 53% at 6 months). Few participants reported SARS-CoV-2 infections, side-effects, or serious adverse events. CONCLUSIONS: Bivalent mRNA vaccination elicited a robust humoral response in individuals with HIV or solid organ transplants, with delayed responses in lung transplant recipients. Despite a waning effect, antibody levels remained high at 6 months and adverse events were rare.

3.
J Med Virol ; 96(2): e29416, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285457

RESUMO

The raising of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants led to the use of COVID-19 bivalent vaccines, which include antigens of the wild-type (WT) virus, and of the Omicron strain. In this study, we aimed to evaluate the impact of bivalent vaccination on the neutralizing antibody (NAb) response. We enrolled 93 volunteers who had received three or four doses of monovalent vaccines based on the original virus (n = 61), or a booster shot with the bivalent vaccine (n = 32). Serum samples collected from volunteers were subjected to neutralization assays using the WT SARS-CoV-2, and Omicron subvariants. In addition, immunoinformatics to quantify and localize highly conserved NAb epitopes were performed. As main result, we observed that the neutralization titers of samples from individuals vaccinated with the bivalent vaccine were higher for the original virus, in comparison to their capacity of neutralizing the Omicron variant and its subvariants. NAb that recognize epitopes mostly conserved in the WT SARS-CoV-2 were boosted, while those that recognize epitopes mostly present in the Omicron variant, and subvariants were primed. These results indicate that formulation of future vaccines shall consider to target present viruses, and not viruses that no longer circulate.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinação , Imunização Secundária , Anticorpos Neutralizantes , Epitopos/genética , Vacinas Combinadas
4.
Virol J ; 21(1): 82, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589848

RESUMO

Influenza and SARS-CoV-2 are two major respiratory pathogens that cocirculate in humans and cause serious illness with the potential to exacerbate disease in the event of co-infection. To develop a bivalent vaccine, capable of protecting against both infections, we inserted the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein into hemagglutinin (HA) molecule or into the open reading frame of the truncated nonstructural protein 1 (NS1) of live attenuated influenza vaccine (LAIV) virus and assessed phenotypic characteristics of the rescued LAIV-RBD viruses, as well as their immunogenicity in mouse and Syrian hamster animal models. A panel of 9 recombinant LAIV-RBD viruses was rescued using the A/Leningrad/17 backbone. Notably, only two variants with RBD insertions into the HA molecule could express sufficient quantities of RBD protein in infected MDCK cells. Intranasal immunization of mice induced high levels of anti-influenza antibody responses in all chimeric LAIV-RBD viruses, which was comparable to the LAIV virus vector. The RBD-specific antibody responses were most pronounced in the variant expressing RBD194 fragment as a chimeric HA protein. This candidate was further tested in Syrian hamsters and was shown to be immunogenic and capable of protecting animals against both infections.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Glicoproteína da Espícula de Coronavírus , Humanos , Animais , Camundongos , Vacinas contra Influenza/genética , SARS-CoV-2/genética , Vacinas contra COVID-19 , Vacinas Combinadas , Anticorpos Antivirais , Hemaglutininas
5.
J Fish Dis ; 47(7): e13943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38481095

RESUMO

Streptococcosis and aeromoniasis are the main obstacles to sustainable tilapia production. Vaccination offered an effective method to control microbial infections. Previously, a feed-based bivalent vaccine (FBBV) containing killed whole organisms of Streptococcus agalactiae and Aeromonas hydrophila mixed with 10% palm oil was successfully developed, which provided good protection against streptococcosis and aeromoniasis in Oreochromis sp. However, the mechanisms of immunities in vaccinated fish still need clarification. Here, the hindgut transcriptome of vaccinated and control fish was determined, as the gut displays higher affinity towards antigen uptake and nutrient absorption. The efficacy of FBBV to improve fish immunity was evaluated according to the expression of immune-related genes in the vaccinated fish hindgut throughout the 8-week experimental period using RT-qPCR. The vaccinated fish hindgut at week 6 was further subjected to transcriptomic analysis due to the high expression of immune-related genes and contained killed whole organisms. Results demonstrated the expression of immune-related genes was in correlation with the presence of killed whole organisms in the vaccinated fish hindgut. Transcriptomic analysis has allowed the prediction of robust immune-related pathways, including innate and adaptive immunological responses in vaccinated fish hindgut than control fish. Pathways related to the regulation of lipid metabolism and modulation of the immune system were also significantly enriched (p ≤ .05). Overall, results offer a fundamental study on understanding the immunological response in Oreochromis sp. following vaccination with the FBBV pellet and support further application to prevent bacterial diseases in aquaculture.


Assuntos
Aeromonas hydrophila , Vacinas Bacterianas , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Streptococcus agalactiae , Transcriptoma , Vacinação , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Vacinação/veterinária , Aeromonas hydrophila/imunologia , Ciclídeos/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Streptococcus agalactiae/imunologia , Ração Animal/análise , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Perfilação da Expressão Gênica/veterinária
6.
J Infect Dis ; 228(8): 1012-1022, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36988110

RESUMO

BACKGROUND: Human papillomavirus (HPV) viral load (VL) is associated with persistence, which increases cervical cancer risk. The bivalent vaccine protects against oncogenic HPV-16/18 and cross-protects against several nonvaccine types. We examined the effect of 2-dose (2D) and 3-dose (3D) vaccination on HPV prevalence and VL in clearing infections and persistent infections, 6 years and 12 years postvaccination, respectively. METHODS: Vaginal swabs collected from the "HPV Amongst Vaccinated and Non-vaccinated Adolescents" study (HAVANA, 3D-eligible) and HAVANA-2 (2D-eligble) participants were genotyped for HPV with the SPF10-DEIA-LiPA25 system. HPV VL was measured with type-specific quantitative polymerase chain reaction (qPCR). RESULTS: HPV-16, -18, -31, -33, and -45 clearing and/or persistent infection prevalence and HPV-16, -18, and -31 VLs in clearing infections were significantly reduced in 3D-vaccinated women compared to unvaccinated women. Except for HPV-11 and -59 clearing infections, no significant VL differences were observed among vaccinated women, ≤6 and >6 years post-vaccination. Infection numbers were low in 2D-eligible women, with no HPV-16/18 in vaccinated women. No VL differences for the remaining types were found. CONCLUSIONS: 3D vaccination reduces HPV prevalence in clearing infections and persistent infections and decreases HPV VLs in clearing infections, 12 years post-vaccination for vaccine and several nonvaccine types. 2D-eligible women had low infection numbers, with no HPV-16/18 among vaccinated women.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Adolescente , Feminino , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Papillomavirus Humano 16 , Infecção Persistente , Prevalência , Papillomavirus Humano 18 , Vacinação , Papillomaviridae
7.
J Infect Dis ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970668

RESUMO

BACKGROUND: Mutations present in emerging SARS-CoV-2 variants permit evasion of neutralization with prototype vaccines. A novel Omicron BA.1 subvariant-specific vaccine (NVX-CoV2515) was tested alone, or as a bivalent preparation in combination with the prototype vaccine (NVX-CoV2373), to assess antibody responses to SARS-CoV-2. METHODS: Participants aged 18 to 64 years immunized with 3 doses of prototype mRNA vaccines were randomized 1:1:1 to receive a single dose of NVX-CoV2515, NVX-CoV2373, or bivalent mixture in a phase 3 study investigating heterologous boosting with SARS-CoV-2 recombinant spike protein vaccines. Immunogenicity was measured 14 and 28 days after vaccination for the SARS-CoV-2 Omicron BA.1 sublineage and ancestral strain. Safety profiles of vaccines were assessed. RESULTS: Of participants who received trial vaccine (N = 829), those administered NVX-CoV2515 (n = 286) demonstrated superior neutralizing antibody response to BA.1 versus NVX-CoV2373 (n = 274) at Day 14 (geometric mean titer ratio [95% CI]: 1.6 [1.33, 2.03]). Seroresponse rates [n/N; 95% CI] were 73.4% [91/124; 64.7, 80.9] for NVX-CoV2515 versus 50.9% [59/116; 41.4, 60.3] for NVX-CoV2373. All formulations were similarly well-tolerated. CONCLUSIONS: NVX-CoV2515 elicited a superior neutralizing antibody response against the Omicron BA.1 subvariant compared with NVX-CoV2373 when administered as a fourth dose. Safety data were consistent with the established safety profile of NVX-CoV2373.

8.
J Virol ; 96(18): e0133722, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069551

RESUMO

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacinas Combinadas , Estomatite Vesicular , Aminoácidos/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas/imunologia , Vacinas Sintéticas/genética , Vesiculovirus/imunologia
9.
J Virol ; 96(7): e0165221, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289635

RESUMO

Commercial influenza virus vaccines often elicit strain-specific immune responses and have difficulties preventing illness caused by antigenically drifted viral variants. In the last 20 years, the H3N2 component of the annual vaccine has been updated nearly twice as often as the H1N1 component, and in 2019, a mismatch between the wild-type (WT) H3N2 vaccine strain and circulating H3N2 influenza strains led to a vaccine efficacy of ∼9%. Modern methods of developing computationally optimized broadly reactive antigens (COBRAs) for H3N2 influenza viruses utilize current viral surveillance information to design more broadly reactive vaccine antigens. Here, 7 new recombinant hemagglutinin (rHA) H3 COBRA hemagglutinin (HA) antigens were evaluated in mice. Subsequently, two candidates, J4 and NG2, were selected for further testing in influenza-preimmune animals based on their ability to elicit broadly reactive antibodies against antigenically drifted H3N2 viral isolates. In the preimmune model, monovalent formulations of J4 and NG2 elicited broadly reactive antibodies against recently circulating H3N2 influenza viruses from 2019. Bivalent mixtures of COBRA H1 and H3 rHA, Y2 + J4, and Y2 + NG2 outperformed multiple WT H1+H3 bivalent rHA mixtures by eliciting seroprotective antibodies against H1N1 and H3N2 isolates from 2009 to 2019. Overall, the newly generated COBRA HA antigens, namely, Y2, J4, and NG2, had the ability to induce broadly reactive antibodies in influenza-naive and preimmune animals in both monovalent and bivalent formulations, and these antigens outperformed H1 and H3 WT rHA vaccine antigens by eliciting seroprotective antibodies against panels of antigenically drifted historical H1N1 and H3N2 vaccine strains from 2009 to 2019. IMPORTANCE Standard-of-care influenza virus vaccines are composed of a mixture of antigens from different influenza viral subtypes. For the first time, lead COBRA H1 and H3 HA antigens, formulated as a bivalent vaccine, have been investigated in animals with preexisting immunity to influenza viruses. The cocktail of COBRA HA antigens elicited more broadly reactive anti-HA antibodies than those elicited by a comparator bivalent wild-type HA vaccine against H1 and H3 influenza viruses isolated between 2009 and 2019.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vacinas Combinadas , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Vacinas Combinadas/imunologia , Vacinas Sintéticas/imunologia
10.
Ann Hematol ; 102(4): 955-959, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795118

RESUMO

Hematologic complications, including vaccine-induced immune thrombotic thrombocytopenia (VITT), immune thrombocytopenia (ITP), and autoimmune hemolytic anemia (AIHA), have been associated with the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. However, on August 31, 2022, new formulations of the Pfizer-BioNTech and Moderna vaccines were approved for use without clinical trial testing. Thus, any potential adverse hematologic effects with these new vaccines remain unknown. We queried the US Centers for Disease Control Vaccine Adverse Event Reporting System (VAERS), a national surveillance database, through February 3, 2023, all reported hematologic adverse events that occurred within 42 days of administration of either the Pfizer-BioNTech or Moderna Bivalent COVID-19 Booster vaccine. We included all patient ages and geographic locations and utilized 71 unique VAERS diagnostic codes pertaining to a hematologic condition as defined in the VAERS database. Fifty-five reports of hematologic events were identified (60.0% Pfizer-BioNTech, 27.3% Moderna, 7.3% Pfizer-BioNTech bivalent booster plus influenza, 5.5% Moderna bivalent booster plus influenza). The median age of patients was 66 years, and 90.9% (50/55) of reports involved a description of cytopenias or thrombosis. Notably, 3 potential cases of ITP and 1 case of VITT were identified. In one of the first safety analyses of the new SARS-CoV-2 booster vaccines, we identified few adverse hematologic events (1.05 per 1,000,000 doses), most of which could not be definitively attributed to vaccination. However, three reports of possible ITP and one report of possible VITT highlight the need for continued safety monitoring of these vaccines as their use expands and new formulations are authorized.


Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Influenza Humana , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação/efeitos adversos , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/epidemiologia , Vacinas contra COVID-19/efeitos adversos
11.
Vet Res ; 54(1): 57, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434231

RESUMO

Classical swine fever virus (CSFV) infection leading to CSF outbreaks is among the most devastating swine diseases in the pig industry. Porcine circovirus type 2 (PCV2) infection, resulting in porcine circovirus-associated disease (PCVAD), is also a highly contagious disease affecting pig health worldwide. To prevent and control disease occurrence, multiple-vaccine immunization is necessary in contaminated areas or countries. In this study, a novel CSFV-PCV2 bivalent vaccine was constructed and demonstrated to be capable of eliciting humoral and cellular immune responses against CSFV and PCV2, respectively. Moreover, a CSFV-PCV2 dual-challenge trial was conducted on specific-pathogen-free (SPF) pigs to evaluate vaccine efficacy. All of the vaccinated pigs survived and showed no clinical signs of infection throughout the experimental period. In contrast, placebo-vaccinated pigs exhibited severe clinical signs of infection and steeply increased viremia levels of CSFV and PCV2 after virus challenge. Additionally, neither clinical signs nor viral detections were noted in the sentinel pigs when cohabitated with vaccinated-challenged pigs at three days post-inoculation of CSFV, indicating that the CSFV-PCV2 bivalent vaccine completely prevents horizontal transmission of CSFV. Furthermore, conventional pigs were utilized to evaluate the application of the CSFV-PCV2 bivalent vaccine in field farms. An adequate CSFV antibody response and a significant decrease in PCV2 viral load in the peripheral lymph nodes were observed in immunized conventional pigs, suggesting its potential for clinical application. Overall, this study demonstrated that the CSFV-PCV2 bivalent vaccine effectively elicited protective immune responses and the ability to prevent horizontal transmission, which could be a prospective strategy for controlling both CSF and PCVAD in commercial herds.


Assuntos
Circovirus , Vírus da Febre Suína Clássica , Animais , Suínos , Surtos de Doenças , Vacinação/veterinária , Vacinas Combinadas
12.
Fish Shellfish Immunol ; 132: 108457, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455780

RESUMO

Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are typical pathogens of rainbow trout Oncorhynchus mykiss, and the concurrent infection of the two viruses is very common among modern trout hatcheries, which has caused huge economic losses to the rainbow trout farming industry. To prevent and control the spread of IHNV and IPNV in juvenile trout simultaneously, in this study a bivalent recombinant adenovirus vaccine with IHNV Glycoprotein (G) and IPNV VP2 genes was developed. After immunizing juvenile trout with this bivalent vaccine via the immersion route, the expression levels of IHNV G and IPNV VP2 and the representative immune genes in vaccinated and control rainbow trout were tested to evaluate the correlation of immune responses with the expression of viral genes. The neutralizing antibody level induced by this bivalent vaccine as well as the protection efficacy of the vaccine against IHNV and IPNV was also evaluated. The results showed that IHNV G and IPNV VP2 were successfully expressed in juvenile trout, and all the innate and adaptive immune genes were up-regulated. This indicated that the level of the innate and adaptive immune responses were significantly increased, which might be induced by the high expression of the two viral proteins. Compared with the controls, high levels of neutralizing antibodies against IHNV and IPNV were induced in the vaccinated trout. Besides, the bivalent recombinant adenovirus vaccine showed high protection rate against IHNV, with the relative percent survival (RPS) of 81.25%, as well as against IPNV, with the RPS of 78.95%. Taken together, our findings clearly demonstrated that replication-defective adenovirus can be developed as a qualified vector for fish vaccines and IHNV G and IPNV VP2 were two suitable antigenic genes that could induce effective immune protection against these two pathogens. This study provided new insights into developing bivalent vectored vaccines and controlling the spread of IHNV and IPNV simultaneously in juvenile trout.


Assuntos
Vacinas contra Adenovirus , Infecções por Birnaviridae , Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Vírus da Necrose Pancreática Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Vacinas Virais , Animais , Vírus da Necrose Pancreática Infecciosa/fisiologia , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Vacinas Sintéticas , Adenoviridae/genética , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária
13.
Fish Shellfish Immunol ; 132: 108461, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462744

RESUMO

Vibrio species are important pathogens that affect a wide range of farmed fish. Vaccination is regarded as the most efficacious strategy for fighting bacterial infections. However, the underlying mechanisms remain to be elucidated. In the present study, a comparative transcriptome analysis was performed on the spleens from turbot (Scophthalmus maximus) induced by an inactivated bivalent vaccine (Vibrio anguillarum and Vibrio harveyi, IVVah1) at 4 week and 1 day post further challenge. Strong immune responses were induced by the bivalent vaccine, besides differentially expressed genes (DEGs) associated with adaptive immunity, more innate immunity-related DEGs were detected. At the late stage of vaccination, immune-related molecules associated with pattern recognition receptors, inflammatory factors, complement and coagulation cascade-related components, and antigen processing and presentation were significantly regulated, and some of them were even further up-regulated after the bacterial challenge, indicating the cooperation of multiple immune processes during the vaccine immunization process. In addition to the terms or pathways associated with the immune response, enrichment analysis revealed multiple significantly enriched terms/pathways associated with the response to stimulus/stress, homeostasis, metabolism, and biosynthesis, suggesting that a defensive status was established by the bivalent vaccine. This study furnishes new insights into the internal mechanism of immunity upon a combined vaccine administrating in turbot and lays a foundation for developing highly immunogenic vaccines in teleost.


Assuntos
Doenças dos Peixes , Linguados , Vibrioses , Vibrio , Animais , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vacinas de Produtos Inativados , Vibrio/fisiologia , Perfilação da Expressão Gênica/veterinária , Imunidade Inata , Vacinas Combinadas , Proteínas de Peixes/genética
14.
Fish Shellfish Immunol ; 139: 108837, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269913

RESUMO

In recent years, more than one pathogenic organism has usually been isolated from diseased turbot Scophthalmus maximus, creating a pressing need for the development of combination vaccines to prevent fish diseases brought on simultaneously by various infections. In this study, the inactivated bivalent vaccine of Aeromonas salmonicida and Edwardsiella tarda was prepared by the formalin inactivation method. After challenge with A. salmonicida and E. tarda at 4 weeks post-vaccination in turbot, the relative percentage survival (RPS) of the inactivated bivalent vaccine was 77.1%. In addition, we assessed the effects of the inactivated bivalent vaccine and evaluated the immunological processes after immunization in a turbot model. Serum antibody titer and lysozyme activity of the vaccinated group were both upregulated and higher than that in control group after vaccination. The expression levels of genes (TLR2, IL-1ß, CD4, MHCI, MHCⅡ) that related to antigen recognition, processing and presentation were also studied in the liver, spleen and kidney tissues of vaccinated turbot. All the detected genes in the vaccinated group had a significant upward trend, and most of them reached the maximum value at 3-4 weeks, which had significant differences from the control group, suggesting that antigen recognition, processing and presentation pathway was activated by the inactivated bivalent vaccine. Our study provides a basis for further application of the killed bivalent vaccine against A. salmonicida and E. tarda in turbot, making it good potential that can be applied in aquaculture.


Assuntos
Aeromonas salmonicida , Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguados , Animais , Edwardsiella tarda , Anticorpos Antibacterianos , Vacinas Combinadas , Vacinas Bacterianas
15.
Fish Shellfish Immunol ; 132: 108476, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481290

RESUMO

To evaluate the protective effect of viral hemorrhagic septicemia virus genotype IVa (VHSV IVa) genome-based single-cycle viruses against VHSV genotype Ia (VHSV Ia) and infectious hematopoietic necrosis virus (IHNV) in rainbow trout, three kinds of single-cycle VHSVs were rescued using reverse genetic technology: i) rVHSV-IaGΔTM-IVaG containing the transmembrane and cytoplasmic region-deleted G protein (GΔTM) of VHSV Ia instead of VHSV IVa full G gene ORF and having VHSV IVa G proteins on the envelope; ii) rVHSV-IaGΔTM-IaG containing VHSV Ia GΔTM instead of VHSV IVa full G gene ORF and having VHSV Ia G proteins on the envelope; iii) rVHSV-IaGΔTM-ihnvGΔTM-IVaG containing not only VHSV Ia GΔTM instead of full G gene but also IHNV GΔTM instead of NV gene and having VHSV IVa G proteins on the envelope. Rainbow trout immunized with rVHSV-IaGΔTM-IaG and rVHSV-IaGΔTM-IVaG showed significantly higher serum antibody titers against both VHSV Ia and VHSV IVa, and showed no mortality against VHSV Ia infection, while fish in the control groups showed 100% mortalities. Fish immunized with rVHSV-IaGΔTM-ihnvGΔTM-IVaG showed significantly higher serum antibody titers against VHSV IVa, VHSV Ia, and IHNV compared to fish in the control group. Immunization with rVHSV-IaGΔTM-ihnvGΔTM-IVaG induced significantly higher protection against not only VHSV Ia but also IHNV. These results suggest that the present single-cycle rVHSV-based system can be used as a platform to produce combined vaccines that can protect fish from multiple pathogenic species. However, the mechanism of the high protection against IHNV despite comparatively low antibody titer remains to be investigated.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Vírus da Necrose Hematopoética Infecciosa , Novirhabdovirus , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Vírus da Necrose Hematopoética Infecciosa/genética , Imunização , Genótipo , Doenças dos Peixes/prevenção & controle
16.
Fish Shellfish Immunol ; 138: 108813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182796

RESUMO

The occurrence of francisellosis caused by Francisella orientalis sp. nov. (Fo) and columnaris disease caused by Flavobacterium oreochromis (For) is negatively impacting Nile tilapia (Oreochromis niloticus) production, especially when high stocking densities are used. A new and innovative bivalent mucoadhesive nanovaccine was developed in this study for immersion vaccination of tilapia against francisellosis and columnaris disease. It was shown to have the potential to improve both innate and adaptive immunity in vaccinated Nile tilapia. It increased innate immune parameters, such as lysozyme activity, bactericidal activity, phagocytosis, phagocytic index, and total serum IgM antibody levels. Additionally, the vaccine was effective in elevating specific adaptive immune responses, including IgM antibody levels against Fo and For vaccine antigens and upregulating immune-related genes IgM, IgT, CD4+, MHCIIα, and TCRß in the head kidney, spleen, peripheral blood leukocytes, and gills of vaccinated fish. Furthermore, fish vaccinated with the mucoadhesive nanovaccine showed higher survival rates and relative percent survival after being challenged with either single or combined infections of Fo and For. This vaccine is anticipated to be beneficial for large-scale immersion vaccination of tilapia and may be a strategy for shortening vaccination times and increasing immune protection against francisellosis and columnaris diseases in tilapia aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Vacinas Bacterianas
17.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741939

RESUMO

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Assuntos
Toxinas Botulínicas Tipo A , Toxina Tetânica , Animais , Toxina Tetânica/genética , Toxina Tetânica/metabolismo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Ligação Proteica , Anticorpos Neutralizantes , Vacinas de Subunidades Antigênicas/genética
18.
J Korean Med Sci ; 38(46): e396, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38013649

RESUMO

BACKGROUND: This retrospective observational matched-cohort study of 2,151,216 individuals from the Korean coronavirus disease 2019 (COVID-19) vaccine effectiveness cohort aimed to evaluate the comparative effectiveness of the COVID-19 bivalent versus monovalent vaccines in providing additional protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, critical infection, and death in Korea. METHODS: Among individuals, those vaccinated with COVID-19 bivalent vaccines were matched in a 1:1 ratio with those who were vaccinated with monovalent vaccines (bivalent vaccines non-recipients) during the observation period. We fitted a time-dependent Cox proportional-hazards model to estimate hazard ratios (HRs) of COVID-19 outcomes for infection, critical infection, and death, and we defined vaccine effectiveness (VE) as 1-HR. RESULTS: Compared with the bivalent vaccination group, the incidence proportions in the monovalent vaccination group were approximately three times higher for infection, nine times higher for critical infection, and 11 times higher for death. In the early stage of bivalent vaccination, relative VE of bivalent vaccine against monovalent vaccine was 42.4% against SARS-CoV-2 infection, 81.3% against critical infection, and 85.3% against death. In addition, VE against critical infection and death according to the elapsed period after bivalent vaccination was maintained at > 70%. CONCLUSION: The bivalent booster dose provided additional protection against SARS-CoV-2 infections, critical infections, and deaths during the omicron variant phase of the COVID-19 pandemic.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Estudos de Coortes , Pandemias , Estudos Retrospectivos , Vacinação , Vacinas contra COVID-19 , Vacinas Combinadas , República da Coreia/epidemiologia
19.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569329

RESUMO

Classical swine fever (CSF) and porcine epidemic diarrhea (PED) are highly contagious viral diseases that pose a significant threat to piglets and cause substantial economic losses in the global swine industry. Therefore, the development of a bivalent vaccine capable of targeting both CSF and PED simultaneously is crucial. In this study, we genetically engineered a recombinant classical swine fever virus (rCSFV) expressing the antigenic domains of the porcine epidemic diarrhea virus (PEDV) based on the modified infectious cDNA clone of the vaccine strain C-strain. The S1N and COE domains of PEDV were inserted into C-strain cDNA clone harboring the mutated 136th residue of Npro and substituted 3'UTR to generate the recombinant chimeric virus vC/SM3'UTRN-S1NCOE. To improve the efficacy of the vaccine, we introduced the tissue plasminogen activator signal (tPAs) and CARD domain of the signaling molecule VISA into vC/SM3'UTRN-S1NCOE to obtain vC/SM3'UTRN-tPAsS1NCOE and vC/SM3'UTRN-CARD/tPAsS1NCOE, respectively. We characterized three vaccine candidates in vitro and investigated their immune responses in rabbits and pigs. The NproD136N mutant exhibited normal autoprotease activity and mitigated the inhibition of IFN-ß induction. The introduction of tPAs and the CARD domain led to the secretory expression of the S1NCOE protein and upregulated IFN-ß induction in infected cells. Immunization with recombinant CSFVs expressing secretory S1NCOE resulted in a significantly increased in PEDV-specific antibody production, and coexpression of the CARD domain of VISA upregulated the PEDV-specific IFN-γ level in the serum of vaccinated animals. Notably, vaccination with vC/SM3'UTRN-CARD/tPAsS1NCOE conferred protection against virulent CSFV and PEDV challenge in pigs. Collectively, these findings demonstrate that the engineered vC/SM3'UTRN-CARD/tPAsS1NCOE is a promising bivalent vaccine candidate against both CSFV and PEDV infections.


Assuntos
Peste Suína Clássica , Infecções por Coronavirus , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Coelhos , Peste Suína Clássica/prevenção & controle , Ativador de Plasminogênio Tecidual , Anticorpos Antivirais , Vacinas Combinadas , DNA Complementar , Vacinas Virais/genética , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Diarreia
20.
J Med Virol ; 94(8): 3847-3856, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35474320

RESUMO

We previously found that when tandemly expressed with SR69A -VP8*, nonstructural protein 4 (NSP4) of the rotavirus Wa strain exerts a minor effect on elevating the antibody responses targeting the rotavirus antigen VP8* of the 60-valent nanoparticle SR69A -VP8* but could fully protect mice from diarrhea induced by the rotavirus strain Wa. In this study, we chose comparably less immunogenic norovirus 24-valent P particles with homogenous (i.e., VP8* from rotavirus) and heterogeneous (i.e., protruding domain of norovirus) antigens and in more challenging rotavirus SA11 strain-induced diarrhea mouse models to evaluate its main role in recombinant gastroenteritis virus-specific vaccines. The results showed that although as an adjuvant NSP4 exerted limited effects on the elevation of norovirus-specific or VP8*-specific neutralizing antibody production, as an antigen it could confer potent protection, particularly when synergized with VP8*, in rotavirus SA11 strain-induced diarrhea mouse models, possibly blocking the invasion of the intestinal wall by enterotoxin. NSP4 may be unnecessary for other recombinant vaccines as adjuvants, and its display mode should be evaluated specifically to avoid blocking coexpressed antigens in the norovirus P particles.


Assuntos
Norovirus , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Antidiarreicos , Diarreia/prevenção & controle , Humanos , Camundongos , Norovirus/genética , Rotavirus/genética , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/genética , Vacinas Combinadas , Vacinas Sintéticas/genética , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa