Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Biochem Biophys Res Commun ; 698: 149558, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271832

RESUMO

Molecular breeding has brought about significant transformations in the milk market and production system during the twenty-first century. The primary economic characteristic of dairy production pertains to milk fat content. Our previous transcriptome analyses revealed that serine protease 2 (PRSS2) is a candidate gene that could impact milk fat synthesis in bovine mammary epithelial cells (BMECs) of Chinese Holstein dairy cows. To elucidate the function of the PRSS2 gene in milk fat synthesis, we constructed vectors for PRSS2 overexpression and interference and assessed intracellular triglycerides (TGs), cholesterol (CHOL), and nonesterified fatty acid (NEFA) contents in BMECs. Fatty acid varieties and components were also quantified using gas chromatography‒mass spectrometry (GC‒MS) technology. The regulatory pathway mediated by PRSS2 was validated through qPCR, ELISA, and WB techniques. Based on our research findings, PRSS2 emerges as a pivotal gene that regulates the expression of associated genes, thereby making a substantial contribution to lipid metabolism via the leptin (LEP)/Adenylate-activated protein kinase, alpha 1 catalytic subunit (AMPKα1)/sterol regulatory element binding protein 1(SREBP1) pathway by inhibiting TGs and CHOL accumulation while potentially promoting NEFA synthesis in BMECs. Furthermore, the PRSS2 gene enhances intracellular medium- and long-chain fatty acid metabolism by modulating genes related to the LEP/AMPKα1/SREBP1 pathway, leading to increased contents of unsaturated fatty acids C17:1N7 and C22:4N6. This study provides a robust theoretical framework for further investigation into the underlying molecular mechanisms through which PRSS2 influences lipid metabolism in dairy cows.


Assuntos
Ácidos Graxos não Esterificados , Metabolismo dos Lipídeos , Feminino , Bovinos , Animais , Metabolismo dos Lipídeos/genética , Ácidos Graxos não Esterificados/metabolismo , Leptina/metabolismo , Glândulas Mamárias Animais/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Leite/metabolismo , Colesterol/metabolismo , Células Epiteliais/metabolismo , Serina Proteases/metabolismo
2.
Vet Res ; 55(1): 13, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303095

RESUMO

Mastitis, inflammation of the mammary gland, is the costliest disease in dairy cattle and a major animal welfare concern. Mastitis is usually caused by bacteria, of which staphylococci, streptococci and Escherichia coli are most frequently isolated from bovine mastitis. Bacteria activate the mammary immune system in variable ways, thereby influencing the severity of the disease. Escherichia coli is a common cause of mastitis in cattle causing both subclinical and clinical mastitis. Understanding of the molecular mechanisms that activate and regulate the host response would be central to effective prevention of mastitis and breeding of cows more resistant to mastitis. We used primary bovine mammary epithelial cell cultures extracted noninvasively from bovine milk samples to monitor the cellular responses to Escherichia coli challenge. Differences in gene expression between control and challenged cells were studied by total RNA-sequencing at two time points post-challenge. In total, 150 and 440 (Padj < 0.05) differentially expressed genes were identified at 3 h and 24 h post-challenge, respectively. The differentially expressed genes were mostly upregulated at 3 h (141/150) and 24 h (424/440) post-challenge. Our results are in line with known effects of E. coli infection, with a strong early inflammatory response mediated by pathogen receptor families. Among the most significantly enriched early KEGG pathways were the TNF signalling pathway, the cytokine-cytokine receptor interaction, and the NF-kappa B signalling pathway. At 24 h post-challenge, most significantly enriched were the Influenza A, the NOD-like receptor signalling, and the IL-17 signaling pathway.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Mastite Bovina , Feminino , Bovinos , Animais , Escherichia coli/genética , Leite/microbiologia , Glândulas Mamárias Animais/microbiologia , Perfilação da Expressão Gênica/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Células Epiteliais/microbiologia , Mastite Bovina/microbiologia , Doenças dos Bovinos/metabolismo
3.
Cell Biochem Funct ; 42(1): e3918, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269516

RESUMO

Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.


Assuntos
Células Epiteliais , Proteínas do Leite , Animais , Bovinos , Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Serina-Treonina Quinases TOR
4.
Pestic Biochem Physiol ; 201: 105866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685242

RESUMO

Pea Albumin 1, subunit b (PA1b) is a 37 amino acid peptide. It was extracted from pea seeds and showed significant insecticidal activity against certain insects, such as the mosquitoes Culex pipiens and Aedes aegyptii, cereal weevils (genus Sitophilus), and certain species of aphids. Considering that pea seeds are regularly consumed by humans and mammals, PA1b is assumed to be a promising bioinsecticide with no allergenicity or toxicity to hosts. To clarify this aspect, PA1b was applied to bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). The results revealed that LPS induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP-1) secretion, while PA1b depressed these cytokines release via inhibiting NF-κB signaling activation. In addition, PA1b protected mammary epithelial cells from impairment caused by LPS, because it reduced cell membrane permeability and subsequently reconstructed mammary epithelial cell viability. Moreover, it inhibited cell apoptosis accompanied with alleviated oxidative stress. Furthermore, PA1b prevented opening of mitochondrial permeability transition pores, in turn up-regulated mitochondrial membrane potential and ATP production. Therefore, PA1b improved mitochondrial function, which contributed to re-construction of mammary epithelial cell viability. In conclusion, PA1b alleviates LPS-induced inflammation of bovine mammary epithelial cells via inhibiting NF-κB signaling activation and protects bovine mammary epithelial cells by improving mitochondrial function. PA1b is a good therapeutic survival factor for mammary epithelial cells.


Assuntos
Células Epiteliais , Inflamação , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Bovinos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inseticidas/toxicidade , Inseticidas/farmacologia , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673732

RESUMO

Adipose tissue is an active endocrine gland, synthesizing and secreting multiple signaling molecules termed adipokines. Following the detection of adipokines and their receptors in the mammary tissue of various species, it is indicated that adipokines play a role in the development of the mammary gland. The aim of the present study was to determine the concentration-dependent influence of three adipokines, leptin, adiponectin, and chemerin, on the viability, apoptosis, and secretory activity of BME-UV1 bovine mammary epithelial cells. The study confirmed that BME-UV1 cells contain the leptin receptor (Ob-R) protein, and express transcripts of adiponectin (ADIPOR1 and ADIPOR2) and chemerin (CMLKR1 and GPR1) receptors. Regardless of the administered dose, none of the three tested adipokines had an effect on the viability of BME-UV1 cells, and the number of apoptotic cells remained unchanged. However, chemerin (100 ng/mL) stimulated BME-UV1 cells to synthesize and secrete αS1-casein, the major protein component of milk. These results indicate that chemerin may be a potent regulator of the bovine mammary epithelial cells' functional differentiation, contributing, along with the major systemic hormones and local growth factors, to the development of the bovine mammary gland.


Assuntos
Apoptose , Quimiocinas , Células Epiteliais , Glândulas Mamárias Animais , Animais , Bovinos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Quimiocinas/metabolismo , Feminino , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Receptores de Adiponectina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Caseínas/metabolismo , Adiponectina/metabolismo
6.
Genesis ; 61(3-4): e23510, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36748563

RESUMO

Transposon systems are widely used for genetic engineering in various model organisms. PiggyBac (PB) has recently been confirmed to have highly efficient transposition in the mouse germ line and mammalian cell lines. In this study, we used a modified PB transposon system mediated by PB transposase (PBase) mRNA carrying the human lactoferrin gene driven by bovine ß-casein promoter to transfect bovine mammary epithelial cells (BMECs), and the selectable reporter in two stable transgenic BMEC clones was removed using cell-permeant Cre recombinase. These reporter-free transgenic BMECs were used as donor cells for somatic cell nuclear transfer (SCNT) and exhibited a competence of SCNT embryos similar to stable transgenic BMECs and nontransgenic BMECs. The comprehensive information from this study provided a modified approach using an altered PB transposon system mediated by PBase mRNA in vitro and combined with the Cre/loxP system to produce transgenic and selectable reporter-free donor nuclei for SCNT. Consequently, the production of safe bovine mammary bioreactors can be promoted.


Assuntos
Glândulas Mamárias Animais , Animais , Bovinos , Elementos de DNA Transponíveis , Células Epiteliais , Glândulas Mamárias Animais/metabolismo , Técnicas de Transferência Nuclear , RNA Mensageiro/genética
7.
BMC Vet Res ; 19(1): 44, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765367

RESUMO

BACKGROUND: IFN-γ is a pleiotropic cytokine that has been shown to affect multiple cellular functions of bovine mammary epithelial cells (BMECs) including impaired milk fat synthesis and induction of malignant transformation via depletion of arginine, one of host conditionally essential amino acids. But the molecular mechanisms of these IFN-γ induced phenotypes are still unknown. METHODS: BMECs were treated with IFN-γ for 6 h, 12 h, and 24 h. The metabolomic profiling in BMECs upon IFN-γ induction were assessed using untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolomic analysis. Key differentially expressed metabolites (DEMs) were quantified by targeted metabolomics. RESULTS: IFN-γ induction resulted in significant differences in the contents of metabolites. Untargeted analysis identified 221 significantly DEMs, most of which are lipids and lipid-like molecules, organic acids and derivatives, organ heterocyclic compounds and benzenoids. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEMs were enriched in fructose and mannose metabolism, phosphotransferase system (PTS), ß-alanine metabolism, arginine and proline metabolism, methane metabolism, phenylalanine metabolism, and glycolysis/gluconeogenesis. Quantification of selected key DEMs by targeted metabolomics showed significantly decreased levels of D-(-)-mannitol, argininosuccinate, and phenylacetylglycine (PAG), while increased levels in S-hydroxymethylglutathione (S-HMG) and 2,3-bisphospho-D-glyceric acid (2,3-BPG). CONCLUSIONS: These results provide insights into the metabolic alterations in BMECs upon IFN-γ induction and indicate potential theoretical basis for clarifying IFN-γ-induced diseases in mammary gland.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Interferon gama/metabolismo , Arginina , Células Epiteliais/metabolismo
8.
Anim Biotechnol ; 34(8): 4094-4104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837279

RESUMO

Methionine (Met) can promote milk fat synthesis in bovine mammary epithelial cells (BMECs), but the potential molecular mechanism is largely unknown. In this report, we aim to explore the role and molecular mechanism of AT-rich interaction domain 1A (ARID1A) in milk fat synthesis stimulated by Met. ARID1A knockdown and activation indicated that ARID1A negatively regulated the synthesis of triglycerides, cholesterol and free fatty acids and the formation of lipid droplets in BMECs. ARID1A also negatively regulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1. Met stimulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1, while ARID1A gene activation blocked the stimulatory effects of Met. We further found that ARID1A was located in the nucleus of BMECs, and Met reduced the nuclear localization and expression of ARID1A. ARID1A gene activation blocked the stimulation of PI3K and SREBP1 mRNA expression by Met. In summary, our data suggests that ARID1A negatively regulates milk fat synthesis stimulated by Met in BMECs through inhibiting the PI3K-SREBP1 signaling pathway, which may provide some new perspectives for improving milk fat synthesis.


Assuntos
Metionina , Fosfatidilinositol 3-Quinases , Animais , Bovinos , Metionina/farmacologia , Fosfatidilinositol 3-Quinases/genética , Leite/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Racemetionina/metabolismo , Racemetionina/farmacologia , Células Epiteliais/metabolismo
9.
Anim Biotechnol ; 34(8): 3796-3807, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37409454

RESUMO

The experiment investigated the impacts of FA on the proliferation of bovine mammary gland epithelial cells (BMECs) and to investigate the underlying mechanisms. Supplementation of 10 µM FA elevated the mRNA expression of proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1, and protein expression of PCNA and Cyclin A1. The mRNA and protein expression of B-cell lymphoma-2 (BCL2) and the BCL2 to BCL2 associated X 4 (BAX4) ratio elevated, while that of BAX, Caspase-3 and Caspase-9 reduced by FA. Both Akt and mTOR signaling pathways were activated by FA. Moreover, the stimulation of BMECs proliferation, the alteration of proliferative genes and protein expression, the change of apoptotic genes and protein expression, and the activation of mTOR signaling pathway caused by FA were obstructed by Akt inhibitor. Suppression of mTOR with Rapamycin reversed the FA-modulated promotion of BMECs proliferation and change of proliferous genes and protein expression, with no impact on mRNA or proteins expression related to apoptosis and FA-activated Akt signaling pathway. Supplementation of rumen-protected FA in cow diets evaluated milk yields and serum insulin-like growth factor-1 and estradiol levels. The results implied that the proliferation of BMECs was stimulated by FA through the Akt-mTOR signaling pathway.


Assuntos
Glândulas Mamárias Animais , Proteínas Proto-Oncogênicas c-akt , Feminino , Bovinos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Glândulas Mamárias Animais/metabolismo , Serina-Treonina Quinases TOR/genética , Dieta/veterinária , Leite/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/genética , Lactação/genética , Suplementos Nutricionais , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
10.
Anim Biotechnol ; 34(9): 4523-4537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36651589

RESUMO

Mastitis is usually caused by a variety of pathogenic bacteria that seriously impact the health and milk-production ability of dairy cows, with consequent, economically detrimental effects on the dairy industry. Forsythoside A (FTA), isolated from the fruit and leaves of Forsythia suspensa (Thunb.) Vahl (Oleaceae), has been reported to have significant antioxidant, anti-inflammatory, and antibacterial effects. However, it is not clear whether FTA exerts a protective effect against lipopolysaccharide (LPS)-induced bovine mastitis and its potential gene signature. In this study, high-throughput sequencing technology was performed to analyze the differences between the mRNA and enrichment pathway of bovine mammary epithelial cells of the control, LPS, and LPS + FTA groups. The results showed that there were 139 differentially expressed genes (DEGs) (p-value < 0.05, |log2FoldChange| > 1, FPKM > 1) in the LPS group compared with the control group, including 121 up-regulated genes and 18 down-regulated genes, which were mainly enriched in the cellular response to lipopolysaccharide, cytokine activity, protein binding, and IL-17 signaling pathway based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, respectively. Compared with the control group and LPS + FTA group, there were 349 DEGs, including 322 up-regulated genes and 27 down-regulated genes. They were mainly enriched in protein localization to organelles, centrosomes, binding, and the IL-17 signaling pathway, based on GO and KEGG analysis. Compared to the LPS group, the LPS + FTA group had 272 DEGs, including 259 up-regulated genes and 13 down-regulated genes, which were mainly enriched in RNA processing, IL-6 receptor binding, and the lysosome pathway, based on GO and KEGG analyses. It can be seen that LPS stimulation induced the expression of inflammation-related genes, IL-17 and IL-6, whereas FTA treatment promoted the expression of the spliceosome-, lysosome-, and oxidative stress-related genes HSP70, HSPA8, and PARP2. The study utilized RNA-sequencing analysis of FTA against LPS-challenged bovine mammary epithelial cells to explore key mRNA findings that may be strongly associated with inflammation and oxidative stress, and provides a theoretical reference for further elucidation of molecular mechanisms of bovine mastitis and therapeutic effects of FTA against bovine mastitis.


Assuntos
Doenças dos Bovinos , Glicosídeos , Mastite Bovina , Feminino , Bovinos , Animais , Lipopolissacarídeos/farmacologia , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Interleucina-17/uso terapêutico , Mastite Bovina/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/veterinária , Inflamação/metabolismo , RNA Mensageiro/metabolismo
11.
Anim Biotechnol ; 34(7): 2636-2648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984635

RESUMO

The regulatory mechanisms governing metabolism of fatty acids in cow mammary gland are crucial for establishing relationships between milk quality and fatty acid content. Both, microRNAs (miRNAs) and protein-coding genes are important factors involved in the regulation of milk fat synthesis. In this study, high-throughput sequencing of miRNAs and mRNAs in bovine mammary gland tissue was performed during peak lactation (3 samples) and late lactation (3 samples) periods to characterize expression profiles. Differential expression (DE) analyses of miRNA and mRNA and miRNA-mRNA regulatory pathway screening were performed. Two-hundred eighty regulatory miRNA-mRNA pairs were identified, including the miR-33a-lipid phosphate phosphatase-related protein type 4 (LPPR4) pathway. Bioinformatics prediction, dual-luciferase reporter system detection, qRT-PCR, and Western blotting revealed that miR-33a can directly target LPPR4 and inhibit its expression. Experiments also revealed that miR-33a promotes the synthesis of triglycerides and increases the content of unsaturated fatty acids (UFAs) in bovine mammary epithelial cells (BMECs). These results indicate that miR-33a via LPPR4 plays an important role in the regulation of milk fat synthesis and UFA levels.


Assuntos
Glândulas Mamárias Animais , MicroRNAs , Feminino , Bovinos , Animais , Glândulas Mamárias Animais/metabolismo , Ácidos Graxos , Leite/metabolismo , Ácidos Graxos Insaturados/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lactação/genética , Células Epiteliais/metabolismo , RNA Mensageiro/metabolismo
12.
J Dairy Sci ; 106(10): 7266-7280, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730176

RESUMO

Ketosis is often accompanied by a reduction in milk production in dairy cows, but the molecular mechanism has not been fully elucidated. Ketotic cows possess systemic oxidative stress (OS), which may implicate apoptosis in mammary glands. Sirtuin 3 (SIRT3) is a vital regulator of cellular redox homeostasis and is under the control of AMP-activated protein kinase (AMPK) signaling in nonruminants. Thus, we aimed to investigate (1) the AMPK-SIRT3 and apoptosis status of mammary glands from ketotic cows, (2) the effect of SIRT3 on OS-induced apoptosis in bovine mammary epithelial cells (BMEC), and (3) the role of AMPK signaling on SIRT3-mediated effects on apoptosis. Mammary gland samples were reused from a previous study, which contained healthy and ketotic cows (both n = 15). BMEC were incubated with 0, 0.3, 0.6, or 0.9 mM H2O2 for 6 h with/without a 30 min incubation of an antioxidant MitoQ (1 µM). Then BMEC were incubated with SIRT3 overexpression adenovirus (Ad-SIRT3) for 6 h followed by a 6 h incubation with 0.6 mM H2O2. Finally, BMEC were treated with the AMPK inhibitor Compound C (Cd C,10 µM) for 30 min before the H2O2 challenge, or cells were initially treated with the AMPK agonist MK8722 (10 µM) for 30 min followed by a 30-h culture with/without si-SIRT3 and eventually the H2O2 exposure. Ketotic cows displayed higher levels of Bax, Caspase-3 and Bax/Bcl-2 but lower levels of Bcl-2 in mammary glands. H2O2 incubation displayed similar results, exhibiting a dose-dependent manner between the H2O2 concentration and the apoptosis degree. Mito Q pretreatment reduced cellular reactive oxygen species and rescued cells from apoptosis. Ketotic cows had a lower mammary protein abundance of SIRT3. Similarly, H2O2 incubation downregulated both mRNA and protein levels of SIRT3 in a dose- and time-dependent manner. Ad-SIRT3 infection lowered levels of cellular reactive oxygen species, Bax, Caspase-3 and Bax/Bcl-2 but increased levels of Bcl-2. TUNEL assays confirmed that Ad-SIRT3 infection mitigated H2O2-induced apoptosis. Both ketotic cows and H2O2-induced BMEC had lower levels of p-AMPK and p-AMPK/AMPK. Additionally, Cd C pretreatment decreased SIRT3 and Bcl-2 expression but increased levels of Bax and Caspase-3. Contrary to the inhibitor, MK8722 had opposite effects and reduced the percentage of apoptotic cells. However, these effects of MK8722 were reversed upon SIRT3 silencing. In conclusion, in vivo data confirmed that ketosis is associated with greater apoptosis and restricted AMPK-SIRT3 signaling in mammary glands; in vitro data indicated that SIRT3 mitigates OS-induced apoptosis via AMPK signaling. As such, there may be potential benefits for targeting the AMPK-SIRT3 axis to help counteract the negative effects of mammary glands during ketosis.


Assuntos
Sirtuína 3 , Feminino , Bovinos , Animais , Caspase 3 , Espécies Reativas de Oxigênio , Proteínas Quinases Ativadas por AMP , Cádmio , Peróxido de Hidrogênio , Proteína X Associada a bcl-2 , Células Epiteliais , Apoptose , Estresse Oxidativo
13.
Pestic Biochem Physiol ; 193: 105461, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248026

RESUMO

Oxyfluorfen, a phenoxy phenyl-type herbicide, causes significant damage to ecosystems through chronically effecting invertebrates, fish, and mammals. Considering its adverse effect on ecosystem conservation, it is necessary to investigate its toxic effects on animals. However, the mechanisms of oxyfluorfen toxicity on bovines are not well established. This study investigated the cytotoxic effect of oxyfluorfen on bovine mammary epithelial cells (MAC-T). We conducted several functional experiments to examine the response of MAC-T to oxyfluorfen under various concentrations (0, 1, 2, 5, and 10 ppm). Oxyfluorfen decreased cell viability and increased apoptotic cells by regulating the expression of apoptotic genes and proteins in MAC-T. In addition, oxyfluorfen-treated cells exhibited reduced PCNA expression with a low 3D spheroid formation as compared to that of control cells. Furthermore, oxyfluorfen treatment suppressed cell cycle progression with a decrease in cyclin D1 and cyclin A2 in MAC-T. Next, we performed western blot analysis to verify intercellular signaling changes in oxyfluorfen-treated MAC-T. The phosphor-AKT protein was increased, whereas MAPK signal pathways were decreased. Particularly, the combination of oxyfluorfen with U0126 or SP600125 completely blocked the ERK1/2 and JNK pathways leading to cell viability in MAC-T. Moreover, oxyfluorfen induced inflammatory gene expression and autophagy by increasing phosphorylation of P62 and LC3B in MAC-T. These results demonstrated that oxyfluorfen has cytotoxic effect on MAC-T, implying that the milk production capacity in cows may eventually harm humans.


Assuntos
Ecossistema , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Bovinos , Animais , Pontos de Checagem do Ciclo Celular , Células Epiteliais , Ruminantes/metabolismo , Autofagia , Apoptose
14.
Pestic Biochem Physiol ; 196: 105637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945236

RESUMO

Bifenthrin is one of the widely used synthetic pyrethroid insecticides, employed for various purposes worldwide. As lipophilic pyrethroids can easily bind to soil particles, which is why their residues are detected in various environments. Consequently, the toxicity of bifenthrin to non-target organisms can be regarded as an environmental concern. The toxic effects of bifenthrin have been studied in various animal models and cell lines; however, its toxic effects on cattle remain unclear. In particular, gaining insights into the toxic effects of bifenthrin on the mammary lactation system is crucial for the dairy industry. Therefore, we proceeded to investigate the toxic effects of bifenthrin on the bovine mammary epithelial cells (MAC-T cells). We established that bifenthrin inhibited cell proliferation and triggered apoptosis in MAC-T cells. Additionally, bifenthrin induced mitochondrial dysfunction and altered inflammatory gene expression by disrupting mitochondrial membrane potential (MMP) and generating excessive reactive oxygen species (ROS). We also demonstrated that bifenthrin disrupted both cytosolic and mitochondrial calcium ion homeostasis. Furthermore, bifenthrin altered mitogen-activated protein kinase (MAPK) signaling cascades and downregulated casein-related genes. Collectively, we confirmed the multiple toxic effects of bifenthrin on MAC-T cells, which could potentially reduce milk yield and quality.


Assuntos
Cálcio , Piretrinas , Feminino , Bovinos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Células Epiteliais , Piretrinas/farmacologia , Homeostase , Apoptose
15.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686154

RESUMO

The mammary gland is composed of epithelial tissue forming ducts and lobules, and the stroma, composed of adipocytes, connective tissue, and other cell types. The stromal microenvironment regulates mammary gland development by paracrine and cell-cell interactions. In the present study, primary cultures of bovine mammary epithelial cells (bMEC) and bovine adipose-derived stem cells (bASC) subjected to adipogenic differentiation were used to investigate the influence of paracrine factors secreted by preadipocytes and adipocytes on bMEC development. Four types of conditioned media (CM) were collected from undifferentiated preadipocytes (preA) and adipocytes on days: 8, 12, 14 of differentiation. Next, bMEC were cultured for 24 h in CM and cell viability, apoptosis, migratory activity, ability to form spheroids on Matrigel, and secretory activity (alpha S1-casein concentration) were evaluated. CM derived from fully differentiated adipocytes (12 d and 14 d) significantly decreased the number of apoptotic cells in bMEC population and increased the size of spheroids formed by bMEC on Matrigel. CM collected from preadipocytes significantly enhanced bMEC's migration, and stimulated bMEC to produce alpha S1-casein, but only in the presence of prolactin. These results confirm that preadipocytes and adipocytes are important components of the stroma, providing paracrine factors that actively regulate the development of bovine mammary epithelium.


Assuntos
Caseínas , Comunicação Parácrina , Bovinos , Animais , Células Epiteliais , Adipócitos , Epitélio , Meios de Cultivo Condicionados/farmacologia
16.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047630

RESUMO

Transcriptome sequencing showed that syndecan-3 (SDC3) was differentially expressed in high-fat and low-fat mammary epithelial cells of Chinese Holstein cows. Previous studies found that SDC3 plays an important role in inflammatory diseases and virus infection. However, those studies did not confirm whether or not the functional gene SDC3, which plays an important role in regulating milk fat metabolism, has an effect on susceptibility to breast tissue diseases. Therefore, we studied the effects of SDC3 on milk lipid metabolism and inflammation in bovine mammary epithelial cells (BMECs) and further explored the common regulatory pathway of SDC3 in both. The overexpression of SDC3 increased the contents of triglycerides and cholesterol, reduced the content of non-esterified fatty acids, inhibited the expression of inflammatory factors (IL-6, IL-1ß, TNF-α and COX-2), and reduced the production of ROS in BMECs. However, silenced SDC3 had the opposite effect. Further exploring the mechanisms of SDC3, we found that SDC3 upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARG) through the AMPK/SIRT1 signal pathway to promote milk fat synthesis. It also regulated the activation of the NF-κB pathway through the AMPK/SIRT1 signal pathway, reducing the expression of inflammatory factors and ROS production, thus inhibiting the inflammatory response of BMECs. Nuclear factor kappa B subunit 1 (NF-κB p50) was an important target of SDC3 in this process. To sum up, our results showed that SDC3 coregulated milk fat metabolism and inflammation through the AMPK/SIRT1 signaling pathway. This study laid a foundation for the comprehensive evaluation of breeding value based on multi-effect functional genes in dairy cow molecular breeding.


Assuntos
Leite , NF-kappa B , Feminino , Bovinos , Animais , Leite/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sindecana-3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Metabolismo dos Lipídeos , Inflamação/metabolismo , Células Epiteliais/metabolismo
17.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 463-474, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35997417

RESUMO

Mastitis is one of the most common diseases of dairy cattle and can be caused by physical stress, chemicals and microbial infection. Staphylococcus aureus is the most common pathogens that induce mastitis in dairy cattle. In this study, bovine mammary epithelial cells (BMECs) were treated either with lipoteichoic acid (LTA, 30 µg/ml) or 1 × phosphate-buffer saline (PBS, control) and RNA-Seq was applied to explore the effect of LTA on the expression microRNAs (miRNAs) in BMECs. Compared to the control group, 43 miRNAs were significantly up-regulated and eight miRNAs were significantly down-regulated. Additionally, 724 genes were significantly up-regulated and 13 genes were significantly down-regulated in LTA group relative to the control group. Bta-miR-196a, bta-miR-2285aj-5p, bta-miR-143, bta-miR-2433, bta-miR-2284f and bta-miR-2368-3p were selected from 51 differentially expressed miRNAs and are discussed in this manuscript. Target gene prediction revealed that the target genes of these six miRNAs were all differentially expressed, including MT1E, SPDYA, FGL1, TLR2, PAPOLG, ZDHHC17 and SMC4. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the target genes with differentially expressed miRNAs were enriched in mitogen-activated protein kinase (MAPK) signalling pathway, rheumatoid arthritis and cancer. Therefore, the results of this study provided new evidences for the molecular mechanism of LTA-induced mastitis, which may provide new targets for the diagnosis and treatment of mastitis in dairy cattle.


Assuntos
Doenças dos Bovinos , Mastite , MicroRNAs , Feminino , Bovinos , Animais , MicroRNAs/genética , Perfilação da Expressão Gênica/veterinária , Células Epiteliais , Mastite/veterinária
18.
Microb Pathog ; 162: 105364, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921958

RESUMO

Bovine mastitis is caused by bacterial infection and characterized by inflammatory and infectious processes. Staphylococcus aureus frequently causes subclinical mastitis in dairy cows. In this study, we aimed to investigate the roles of S. aureus lipoproteins in inducing inflammatory responses and in mediating bacterial internalization into bovine mammary epithelial cells (bMECs). The results showed that TLR2 expression in bMECs infected with S. aureus isogenic mutant deficient in lipoprotein maturation was decreased compared to that in bMECs infected with wild-type S. aureus. Lipoproteins from S. aureus and the engagement of TLR2 were essential for inducing the activation of MAPK and NF-κB signaling, and stimulating the secretion of the inflammatory mediators tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-X-C motif chemokine ligand 8 (CXCL8). The production of prostaglandin E2 (PGE2) and the expression of PTGS2 in S. aureus-infected bMECs were dependent on the presence of bacterial lipoproteins. Furthermore, bacterial lipoproteins contributed to S. aureus internalization into bMECs. These findings suggest the S. aureus lipoproteins are key immunobiologically active compounds that trigger inflammatory responses in bMECs and play an important role in S. aureus internalization into bMECs.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Células Epiteliais , Feminino , Lipoproteínas , Glândulas Mamárias Animais , Infecções Estafilocócicas/veterinária , Staphylococcus aureus
19.
Vet Res ; 53(1): 104, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482404

RESUMO

The protective arm of the renin-angiotensin system (RAS), the ACE 2/Ang-(1-7)/MasR axis, has become a new anti-inflammatory target. As a specific activator of ACE2, diminazene aceturate (DA) can promote anti-inflammatory effects by regulating the ACE2/Ang-(1-7)/MasR axis. However, due to the reported toxicity of DA, its application has been limited. In the current study, we synthesized a low toxicity DA derivative 3 (DAD3) and sought to determine whether DAD3 can also activate ACE2 in bovine mammary epithelial cells (BMEC) and regulate the RAS system to inhibit inflammation. We found that both DA and DAD3 can activate and promote ACE2 expression in BMEC. iRNA-mediated knockdown of ACE2 demonstrated that DAD3 activates the ACE2/Ang-(1-7)/MasR axis and plays an anti-inflammatory role in BMEC. Furthermore, the inhibitory effects of DA and DAD3 on the protein phosphorylation of MAPK and NF-κB pathways were reduced in ACE2-silenced BMEC. Our findings show that ACE2 is a target of DAD3, which leads to inhibition of the MAPK and NF-κB signalling pathways and protects against LPS-induced inflammation in BMEC. Thus, DAD3 may provide a new strategy to treat dairy cow mastitis.


Assuntos
Células Epiteliais , NF-kappa B , Bovinos , Animais , Feminino , Anti-Inflamatórios/farmacologia
20.
Mol Biol Rep ; 49(10): 9297-9305, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35945402

RESUMO

BACKGROUND: Exosomes are involved in intercellular communication, affecting many physiological and pathological process. The present study evaluated the effects of serum exosomes on the function of bovine mammary epithelial cells (BMECs) and milk synthesis under heat stress. METHODS AND RESULTS: We cultured the BMECs in fetal bovine serum (FBS) or exosome-free FBS medium and examined, their viability using CCK-8 kit. The results showed that culturing the cells in an exosome-free medium decreased viability and increased the levels of reactive oxygen species. The BMECs cultured in the exosome-free medium had reduced mitochondrial membrane potential, decreased manganese superoxide dismutase activity, and disrupted mitochondrial dynamics. They exhibited apoptosis due to upregulated Drp1, Fis1, Bax and HSP70. Lastly, we observed downregulation of milk fat and lactoprotein-related genes: mTOR, PPARγ, p-mTOR and ADD1 and SREBP1, ELF5, and CSN2, respectively, after culturing the cells in an exosome-free medium. These negative effects of the exosome-free medium on the BMECs could be further reinforced under heat stress. CONCLUSION: Our results demonstrated that exosomes from serum are critical for maintaining the normal function of BMECs.


Assuntos
Glândulas Mamárias Animais , PPAR gama , Animais , Células Cultivadas , Células Epiteliais , Resposta ao Choque Térmico , Espécies Reativas de Oxigênio/farmacologia , Soroalbumina Bovina/farmacologia , Sincalida/farmacologia , Superóxido Dismutase , Serina-Treonina Quinases TOR , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa