Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 487-494, 2024 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-38864135

RESUMO

OBJECTIVE: To unveil the pathological changes associated with demyelination in schizophrenia (SZ) and its consequential impact on interstitial fluid (ISF) drainage, and to investigate the therapeutic efficacy of ursolic acid (UA) in treating demyelination and the ensuing abnormalities in ISF drainage in SZ. METHODS: Female C57BL/6J mice, aged 6-8 weeks and weighing (20±2) g, were randomly divided into three groups: control, SZ model, and UA treatment. The control group received intraperitoneal injection (ip) of physiological saline and intragastric administration (ig) of 1% carboxymethylcellulose sodium (CMC-Na). The SZ model group was subjected to ip injection of 2 mg/kg dizocilpine maleate (MK-801) and ig administration of 1% CMC-Na. The UA treatment group underwent ig administration of 25 mg/kg UA and ip injection of 2 mg/kg MK-801. The treatment group received UA pretreatment via ig administration for one week, followed by a two-week drug intervention for all the three groups. Behavioral assessments, including the open field test and prepulse inhibition experiment, were conducted post-modeling. Subsequently, changes in the ISF partition drainage were investigated through fluorescent tracer injection into specific brain regions. Immunofluorescence analysis was employed to examine alterations in aquaporin 4 (AQP4) polarity distribution in the brain and changes in protein expression. Myelin reflex imaging using Laser Scanning Confocal Microscopy (LSCM) was utilized to study modifications in myelin within the mouse brain. Quantitative data underwent one-way ANOVA, followed by TukeyHSD for post hoc pairwise comparisons between the groups. RESULTS: The open field test revealed a significantly longer total distance [(7 949.39±1 140.55) cm vs. (2 831.01±1 212.72) cm, P < 0.001] and increased central area duration [(88.43±22.06) s vs. (56.85±18.58) s, P=0.011] for the SZ model group compared with the controls. The UA treatment group exhibited signifi-cantly reduced total distance [(2 415.80±646.95) cm vs. (7 949.39±1 140.55) cm, P < 0.001] and increased central area duration [(54.78±11.66) s vs. (88.43±22.06) s, P=0.007] compared with the model group. Prepulse inhibition test results demonstrated a markedly lower inhibition rate of the startle reflex in the model group relative to the controls (P < 0.001 for both), with the treatment group displaying significant improvement (P < 0.001 for both). Myelin sheath analysis indicated significant demyelination in the model group, while UA treatment reversed this effect. Fluorescence tracing exhibited a significantly larger tracer diffusion area towards the rostral cortex and reflux area towards the caudal thalamus in the model group relative to the controls [(13.93±3.35) mm2 vs. (2.79±0.94) mm2, P < 0.001 for diffusion area; (2.48±0.38) mm2 vs. (0.05±0.12) mm2, P < 0.001 for reflux area], with significant impairment of drainage in brain regions. The treatment group demonstrated significantly reduced tracer diffusion and reflux areas [(7.93±2.48) mm2 vs. (13.93±3.35) mm2, P < 0.001 for diffusion area; (0.50±0.30) mm2 vs. (2.48±0.38) mm2, P < 0.001 for reflux area]. Immunofluorescence staining revealed disrupted AQP4 polarity distribution and reduced AQP4 protein expression in the model group compared with the controls [(3 663.88±733.77) µm2 vs. (13 354.92±4 054.05) µm2, P < 0.001]. The treatment group exhibited restored AQP4 polarity distribution and elevated AQP4 protein expression [(11 104.68±3 200.04) µm2 vs. (3 663.88±733.77) µm2, P < 0.001]. CONCLUSION: UA intervention ameliorates behavioral performance in SZ mice, Thus alleviating hyperactivity and anxiety symptoms and restoring sensorimotor gating function. The underlying mechanism may involve the improvement of demyelination and ISF drainage dysregulation in SZ mice.


Assuntos
Doenças Desmielinizantes , Modelos Animais de Doenças , Líquido Extracelular , Camundongos Endogâmicos C57BL , Esquizofrenia , Triterpenos , Ácido Ursólico , Animais , Camundongos , Triterpenos/uso terapêutico , Triterpenos/farmacologia , Esquizofrenia/tratamento farmacológico , Feminino , Doenças Desmielinizantes/tratamento farmacológico , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Maleato de Dizocilpina , Aquaporina 4/metabolismo
2.
Pharm Res ; 40(11): 2715-2730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37610619

RESUMO

BACKGROUND: Oxycodone active uptake across the blood-brain barrier (BBB) is associated with the putative proton-coupled organic cation (H+/OC) antiporter system. Yet, the activity of this system at the blood-cerebrospinal fluid barrier (BCSFB) is not fully understood. Additionally, sex differences in systemic pharmacokinetics and pharmacodynamics of oxycodone has been reported, but whether the previous observations involve sex differences in the function of the H+/OC antiporter system remain unknown. The objective of this study was, therefore, to investigate the extent of oxycodone transport across the BBB and the BCSFB in female and male Sprague-Dawley rats using microdialysis. METHODS: Microdialysis probes were implanted in the blood and two of the following brain locations: striatum and lateral ventricle or cisterna magna. Oxycodone was administered as an intravenous infusion, and dialysate, blood and brain were collected. Unbound partition coefficients (Kp,uu) were calculated to understand the extent of oxycodone transport across the blood-brain barriers. Non-compartmental analysis was conducted using Phoenix 64 WinNonlin. GraphPad Prism version 9.0.0 was used to perform t-tests, one-way and two-way analysis of variance followed by Tukey's or Sídák's multiple comparison tests. Differences were considered significant at p < 0.05. RESULTS: The extent of transport at the BBB measured in striatum was 4.44 ± 1.02 (Kp,uu,STR), in the lateral ventricle 3.41 ± 0.74 (Kp,uu,LV) and in cisterna magna 2.68 ± 1.01 (Kp,uu,CM). These Kp,uu values indicate that the extent of oxycodone transport is significantly lower at the BCSFB compared with that at the BBB, but still confirm the presence of active uptake at both blood-brain interfaces. No significant sex differences were observed in neither the extent of oxycodone delivery to the brain, nor in the systemic pharmacokinetics of oxycodone. CONCLUSIONS: The findings clearly show that active uptake is present at both the BCSFB and the BBB. Despite some underestimation of the extent of oxycodone delivery to the brain, CSF may be an acceptable surrogate of brain ISF for oxycodone, and potentially also other drugs actively transported into the brain via the H+/OC antiporter system.


Assuntos
Barreira Hematoencefálica , Oxicodona , Ratos , Feminino , Masculino , Animais , Oxicodona/farmacocinética , Microdiálise , Caracteres Sexuais , Ratos Sprague-Dawley , Encéfalo , Antiporters
3.
Handb Exp Pharmacol ; 253: 385-423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28744585

RESUMO

Mechanisms for elimination of metabolites from ISF include metabolism, blood-brain barrier transport and non-selective, perivascular efflux, this last being assessed by measuring the clearance of markers like inulin. Clearance describes elimination. Clearance of a metabolite generated within the brain is determined as its elimination rate divided by its concentration in interstitial fluid (ISF). However, the more frequently measured parameter is the rate constant for elimination determined as elimination rate divided by amount present, which thus depends on both the elimination processes and the distribution of the metabolite in the brain. The relative importance of the various elimination mechanisms depends on the particular metabolite. Little is known about the effects of sleep on clearance via metabolism or blood-brain barrier transport, but studies with inulin in mice comparing perivascular effluxes during sleep and wakefulness reveal a 4.2-fold increase in clearance. Amongst the important brain metabolites considered, CO2 is eliminated so rapidly across the blood-brain barrier that clearance is blood flow limited and elimination quickly balances production. Glutamate is removed from ISF primarily by uptake into astrocytes and conversion to glutamine, but also by transport across the blood-brain barrier. Both lactate and amyloid-ß are eliminated by metabolism, blood-brain barrier transport and perivascular efflux and both show decreased production, decreased ISF concentration and increased perivascular clearance during sleep. Taken altogether available data indicate that sleep increases perivascular and non-perivascular clearances for amyloid-ß which reduces its concentration and may have long-term consequences for the formation of plaques and cerebral arterial deposits.


Assuntos
Barreira Hematoencefálica , Encéfalo/metabolismo , Vigília , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Camundongos , Sono
4.
Am J Physiol Heart Circ Physiol ; 311(5): H1132-H1138, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591216

RESUMO

Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125I-TyrA14-insulin clearance. We further confirmed that 125I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding.


Assuntos
Barreira Hematoencefálica/metabolismo , Líquido Cefalorraquidiano/metabolismo , Células Endoteliais/metabolismo , Líquido Extracelular/metabolismo , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Microvasos/metabolismo , Receptor de Insulina/metabolismo , Espaço Subaracnóideo/metabolismo , Animais , Transporte Biológico , Dieta Hiperlipídica , Ensaio de Imunoadsorção Enzimática , Técnica Clamp de Glucose , Técnicas In Vitro , Injeções Intravenosas , Injeções Intraventriculares , Radioisótopos do Iodo , Masculino , Pia-Máter/irrigação sanguínea , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/antagonistas & inibidores
5.
Neurosurg Focus ; 41(5): E10, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27798982

RESUMO

Hydrocephalus, despite its heterogeneous causes, is ultimately a disease of disordered CSF homeostasis that results in pathological expansion of the cerebral ventricles. Our current understanding of the pathophysiology of hydrocephalus is inadequate but evolving. Over this past century, the majority of hydrocephalus cases has been explained by functional or anatomical obstructions to bulk CSF flow. More recently, hydrodynamic models of hydrocephalus have emphasized the role of abnormal intracranial pulsations in disease pathogenesis. Here, the authors review the molecular mechanisms of CSF secretion by the choroid plexus epithelium, the most efficient and actively secreting epithelium in the human body, and provide experimental and clinical evidence for the role of increased CSF production in hydrocephalus. Although the choroid plexus epithelium might have only an indirect influence on the pathogenesis of many types of pediatric hydrocephalus, the ability to modify CSF secretion with drugs newer than acetazolamide or furosemide would be an invaluable component of future therapies to alleviate permanent shunt dependence. Investigation into the human genetics of developmental hydrocephalus and choroid plexus hyperplasia, and the molecular physiology of the ion channels and transporters responsible for CSF secretion, might yield novel targets that could be exploited for pharmacotherapeutic intervention.


Assuntos
Vazamento de Líquido Cefalorraquidiano/diagnóstico , Vazamento de Líquido Cefalorraquidiano/cirurgia , Plexo Corióideo/metabolismo , Hidrocefalia/diagnóstico , Hidrocefalia/cirurgia , Ventrículos Cerebrais/metabolismo , Humanos
6.
Methods Mol Biol ; 2794: 259-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630235

RESUMO

Many biological molecules in the brain interstitial fluid are involved in neuronal functions. Therefore, measuring the levels of these molecules in the extracellular fluid would provide deep insights into the physiological/pathological mechanisms underlying brain functions/disorders. In vivo microdialysis is a powerful technique used to examine the extracellular levels of various molecules in the brains of living animals. In neuroscience research, this technique has been widely used to investigate relatively small molecules including neurotransmitters and amino acids. However, recent advances in technology have made it possible to assess large molecules in the brain interstitial fluid, such as signaling peptides and proteins, using microdialysis probes with high-molecular-weight cutoff membranes. This chapter describes an in vivo microdialysis method to collect and measure the levels of large biological molecules in the extracellular fluid of the brains of freely moving mice.


Assuntos
Encefalopatias , Encéfalo , Animais , Camundongos , Microdiálise , Aminoácidos , Líquido Extracelular
7.
Pharmaceutics ; 15(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37514066

RESUMO

The increasing relevance of improved therapeutic monoclonal antibodies (mAbs) to treat neurodegenerative diseases has strengthened the need to reliably measure their brain pharmacokinetic (PK) profiles. The aim of this study was, therefore, to absolutely quantify the therapeutic antibody ocrelizumab (OCR) as a model antibody in mouse brain interstitial fluid (ISF), and to record its PK profile by using cerebral open flow microperfusion (cOFM). Further, to monitor the blood-brain barrier (BBB) integrity using an endogenous antibody with a similar molecular size as OCR. The study was conducted on 13 male mice. Direct and absolute OCR quantification was performed with cOFM in combination with zero flow rate, and subsequent bioanalysis of the obtained cerebral ISF samples. For PK profile recording, cerebral ISF samples were collected bi-hourly, and brain tissue and plasma were collected once at the end of the sampling period. The BBB integrity was monitored during the entire PK profile recording by using endogenous mouse immunoglobulin G1. We directly and absolutely quantified OCR and recorded its brain PK profile over 96 h. The BBB remained intact during the PK profile recording. The resulting data provide the basis for reliable PK assessment of therapeutic antibodies in the brain thus favoring the further development of therapeutic monoclonal antibodies.

8.
Jpn J Radiol ; 40(2): 147-158, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34390452

RESUMO

PURPOSE: The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was developed to evaluate the brain's glymphatic function or interstitial fluid dynamics. This study aimed to evaluate the reproducibility of the DTI-ALPS method and the effect of modifications in the imaging method and data evaluation. MATERIALS AND METHODS: Seven healthy volunteers were enrolled in this study. Image acquisition was performed for this test-retest study using a fixed imaging sequence and modified imaging methods which included the placement of region of interest (ROI), imaging plane, head position, averaging, number of motion-proving gradients, echo time (TE), and a different scanner. The ALPS-index values were evaluated for the change of conditions listed above. RESULTS: This test-retest study by a fixed imaging sequence showed very high reproducibility (intraclass coefficient = 0.828) for the ALPS-index value. The bilateral ROI placement showed higher reproducibility. The number of averaging and the difference of the scanner did not influence the ALPS-index values. However, modification of the imaging plane and head position impaired reproducibility, and the number of motion-proving gradients affected the ALPS-index value. The ALPS-index values from 12-axis DTI and 3-axis diffusion-weighted image (DWI) showed good correlation (r = 0.86). Also, a shorter TE resulted in a larger value of the ALPS-index. CONCLUSION: ALPS index was robust under the fixed imaging method even when different scanners were used. ALPS index was influenced by the imaging plane, the number of motion-proving gradient axes, and TE in the imaging sequence. These factors should be uniformed in the planning ALPS method studies. The possibility to develop a 3-axis DWI-ALPS method using three axes of the motion-proving gradient was also suggested.


Assuntos
Imagem de Tensor de Difusão , Líquido Extracelular , Imagem de Difusão por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
9.
World Neurosurg ; 145: 187-196, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890850

RESUMO

The development of curative treatment for glioblastoma has been extremely challenging. Chemotherapeutic agents that have seemed promising have failed in clinical trials. Drugs that can successfully target cancer cells within the brain must first traverse the brain interstitial fluid. Cerebral microdialysis (CMD) is an invasive technique in which interstitial fluid can be directly sampled. CMD has primarily been used clinically in the setting of head trauma and subarachnoid hemorrhage. Our goal was to review the techniques, principles, and new data pertaining to CMD to highlight its use in neuro-oncology. We conducted a literature search using the PubMed database and selected studies in which the investigators had used CMD in either animal brain tumor models or clinical trials. The references were reviewed for additional information. Studies of CMD have shown its importance as a neurosurgical technique. CMD allows for the collection of pharmacokinetic data on drug penetrance across the blood-brain barrier and metabolic data to characterize the response to chemotherapy. Although no complications have been reported, the current CMD technique (as with any procedure) has risks and limitations, which we have described in the present report. Animal CMD experiments have been used to exclude central nervous system drug candidates from progressing to clinical trials. At present, patients undergoing CMD have been monitored in the intensive care unit, owing to the requisite tethering to the apparatus. This can be expected to change soon because of advances in microminiaturization. CMD is an extremely valuable, yet underused, technique. Future CMD applications will have central importance in assessing drug delivery to tumor cells in vivo, allowing a pathway to successful therapy for malignant brain tumors.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Microdiálise/métodos , Animais , Barreira Hematoencefálica , Humanos , Microdiálise/instrumentação
10.
Front Neurosci ; 15: 674898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967688

RESUMO

The pathogenesis of peritumoral brain edema (PTBE) in meningiomas remains unclear. The glymphatic system is recently recognized as a pathway for waste clearance and maintaining fluid balance in the brain parenchymal interstitium. We aimed to investigate if the PTBE volume of meningiomas correlates with their glymphatic function. A total of 80 meningioma patients (mean age, 58.8 years; 37 men) and 44 normal subjects (mean age 53.3 years; 23 men) who had preoperative diffusion-tensor imaging for calculation of the analysis along the perivascular space (ALPS) index were retrospectively included. Information collected from each patient included sex, age, tumor grade, Ki-67 index, tumor location, tumor volume, PTBE volume and ALPS index. Comparisons of ALPS index among meningiomas without PTBE, meningiomas with PTBE, and normal subjects were performed using analysis of covariance with Bonferroni correction and adjustments for age and sex. Pearson correlation coefficient and multivariable linear regression analyses were performed to identify factors associated with PTBE volume. Group comparisons revealed that the ALPS index was significantly higher (P < 0.05) in meningiomas without PTBE vs. meningiomas with PTBE and normal subjects. On the other hand, ALPS index was not different between meningiomas with PTBE and normal subjects. On Pearson correlation and multivariable linear regression analyses, the ALPS index was the only factor significantly (P < 0.05) associated with PTBE volume. In conclusion, PTBE volume inversely correlated with ALPS index in meningiomas. PTBE formation in meningiomas may be related to glymphatic dysfunction.

11.
J Neurosci Methods ; 311: 394-401, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266621

RESUMO

BACKGROUND: Assessment of drug concentration in the brain interstitial fluid (ISF) is crucial for development of brain active drugs, which are mainly small, lipophilic substances able to cross the blood-brain barrier (BBB). We aimed to compare the applicability of cerebral Open Flow Microperfusion (cOFM) and Microdialysis (MD) to sample the lipophilic substance amitriptyline (AMI), its metabolites Hydroxyamitriptyline (HYA), Nortriptyline (NOR), Amitriptyline-N-Oxide (ANO), deuterated water (D2O) and the hydrophilic substance sodium fluorescein (Naf) in brain ISF. NEW METHOD: cOFM has been refined to yield increased spatial resolution and performance. COMPARISON OF COFM AND MD AND RESULTS: Performance of cOFM and MD was assessed by in vivo AUC ratios of probe samples (AUCCOFM/AUCMD) and the in vivo relative recovery of D2O (RRvv,D2O). Adsorption of AMI and Naf to MD and cOFM was assessed by the in vitro relative recovery (RRvt) prior to the in vivo experiments. The in vivo AUC ratio of AMI and RRvv,D2O was about two times higher for cOFM than for MD (AUCOFM/AUCMD = 2.0, RRvv,D2O(cOFM)/RRvv,D2O(MD) = 2.1). cOFM detected all investigated AMI metabolites except NOR. MD did not detect HYA, NOR, ANO and Naf. In vitro adsorption of AMI and Naf to the MD membrane was strong (RRvt,AMI = 4.4%, RRvt,Naf = 1.5%) but unspecific adsorption to cOFM was negligibly small (RRvt,AMI = 98% and RRvt,Naf = 98%). CONCLUSIONS: cOFM showed better performance when sampling AMI and its metabolites, Naf and D2O, and had an about two times higher RRvv,D2O than MD. MD did not detect HYA, NOR, ANO and Naf, most likely due to membrane adsorption.


Assuntos
Amitriptilina/análise , Química Encefálica , Líquido Extracelular/química , Microdiálise/métodos , Perfusão/métodos , Amitriptilina/administração & dosagem , Amitriptilina/metabolismo , Animais , Masculino , Ratos Sprague-Dawley
14.
Fluids Barriers CNS ; 13(1): 19, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27799072

RESUMO

The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia
15.
Fluids Barriers CNS ; 11(1): 26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25678956

RESUMO

Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.

16.
Artigo em Chinês | WPRIM | ID: wpr-612439

RESUMO

Objective To investigate the intervening effect of electroacupuncture on brain interstitial fluid (ISF) and hippocampal soluble Aβ1-42 levels in mice with early Alzheimer's disease.Method Sixteen 5-month-old male APP/PS1 positive transgenic mice were randomized to model and acupuncture groups, 8 mice each in one cage. Isosexual negative transgenic mice constituted a normal control group. Electroacupuncture at Baihui(GV20) and Yongquan(KI1) or binding under the same condition was used as an intervention measure. Mouse hippocampal interstitial fluid was obtained by brain microdialysis. Hippocampal tissue and ISFβ amyloid protein 1-42 levels were measured by ELISA in the three groups of mice at 6, 7, 8 and 9 hrs after intervention to observe the changes. Result Hippocampal tissue and ISF soluble Aβ1-42 levels were significantly higher in the model group than in the normal group (P0.05). The results of sample detection did not show a tendency to change over time (P>0.05). Conclusion Electroacupuncture can decrease hippocampal soluble Aβ1-42 levels in a mouse model of AD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa