Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Brain Mapp ; 44(8): 3094-3111, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939069

RESUMO

The "brain signature of cognition" concept has garnered interest as a data-driven, exploratory approach to better understand key brain regions involved in specific cognitive functions, with the potential to maximally characterize brain substrates of behavioral outcomes. Previously we presented a method for computing signatures of episodic memory. However, to be a robust brain measure, the signature approach requires a rigorous validation of model performance across a variety of cohorts. Here we report validation results and provide an example of extending it to a second behavioral domain. In each of two discovery data cohorts, we derived regional brain gray matter thickness associations for two domains: neuropsychological and everyday cognition memory. We computed regional association to outcome in 40 randomly selected discovery subsets of size 400 in each cohort. We generated spatial overlap frequency maps and defined high-frequency regions as "consensus" signature masks. Using separate validation datasets, we evaluated replicability of cohort-based consensus model fits and explanatory power by comparing signature model fits with each other and with competing theory-based models. Spatial replications produced convergent consensus signature regions. Consensus signature model fits were highly correlated in 50 random subsets of each validation cohort, indicating high replicability. In comparisons over each full cohort, signature models outperformed other models. In this validation study, we produced signature models that replicated model fits to outcome and outperformed other commonly used measures. Signatures in two memory domains suggested strongly shared brain substrates. Robust brain signatures may therefore be achievable, yielding reliable and useful measures for modeling substrates of behavioral domains.


Assuntos
Encéfalo , Humanos , Prognóstico , Encéfalo/diagnóstico por imagem
2.
Hum Brain Mapp ; 43(9): 2845-2860, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289025

RESUMO

Structural MRI (sMRI) provides valuable information for understanding neurodegenerative illnesses such as Alzheimer's Disease (AD) since it detects the brain's cerebral atrophy. The development of brain networks utilizing single imaging data-sMRI is an understudied area that has the potential to provide a network neuroscientific viewpoint on the brain. In this paper, we proposed a framework for constructing a brain network utilizing sMRI data, followed by the extraction of signature networks and important regions of interest (ROIs). To construct a brain network using sMRI, nodes are defined as regions described by the brain atlas, and edge weights are determined using a distance measure called the Sorensen distance between probability distributions of gray matter tissue probability maps. The brain signatures identified are based on the changes in the networks of disease and control subjects. To validate the proposed methodology, we first identified the brain signatures and critical ROIs associated with mild cognitive impairment (MCI), progressive MCI (PMCI), and Alzheimer's disease (AD) with 60 reference subjects (15 each of control, MCI, PMCI, and AD). Then, 200 examination subjects (50 each of control, MCI, PMCI, and AD) were selected to evaluate the identified signature patterns. Results demonstrate that the proposed framework is capable of extracting brain signatures and has a number of potential applications in the disciplines of brain mapping, brain communication, and brain network-based applications.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
3.
Alzheimers Dement ; 17(1): 89-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920988

RESUMO

INTRODUCTION: Relationships between brain atrophy patterns of typical aging and Alzheimer's disease (AD), white matter disease, cognition, and AD neuropathology were investigated via machine learning in a large harmonized magnetic resonance imaging database (11 studies; 10,216 subjects). METHODS: Three brain signatures were calculated: Brain-age, AD-like neurodegeneration, and white matter hyperintensities (WMHs). Brain Charts measured and displayed the relationships of these signatures to cognition and molecular biomarkers of AD. RESULTS: WMHs were associated with advanced brain aging, AD-like atrophy, poorer cognition, and AD neuropathology in mild cognitive impairment (MCI)/AD and cognitively normal (CN) subjects. High WMH volume was associated with brain aging and cognitive decline occurring in an ≈10-year period in CN subjects. WMHs were associated with doubling the likelihood of amyloid beta (Aß) positivity after age 65. Brain aging, AD-like atrophy, and WMHs were better predictors of cognition than chronological age in MCI/AD. DISCUSSION: A Brain Chart quantifying brain-aging trajectories was established, enabling the systematic evaluation of individuals' brain-aging patterns relative to this large consortium.


Assuntos
Envelhecimento/fisiologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/crescimento & desenvolvimento , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Substância Branca/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Atrofia , Biomarcadores , Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/psicologia , Disfunção Cognitiva , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Substância Branca/patologia , Adulto Jovem
4.
BMC Psychiatry ; 20(1): 68, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059696

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2-3% and is a leading cause of global disability. Brain circuit abnormalities in individuals with OCD have been identified, but important knowledge gaps remain. The goal of the new global initiative described in this paper is to identify robust and reproducible brain signatures of measurable behaviors and clinical symptoms that are common in individuals with OCD. A global approach was chosen to accelerate discovery, to increase rigor and transparency, and to ensure generalizability of results. METHODS: We will study 250 medication-free adults with OCD, 100 unaffected adult siblings of individuals with OCD, and 250 healthy control subjects at five expert research sites across five countries (Brazil, India, Netherlands, South Africa, and the U.S.). All participants will receive clinical evaluation, neurocognitive assessment, and magnetic resonance imaging (MRI). The imaging will examine multiple brain circuits hypothesized to underlie OCD behaviors, focusing on morphometry (T1-weighted MRI), structural connectivity (Diffusion Tensor Imaging), and functional connectivity (resting-state fMRI). In addition to analyzing each imaging modality separately, we will also use multi-modal fusion with machine learning statistical methods in an attempt to derive imaging signatures that distinguish individuals with OCD from unaffected siblings and healthy controls (Aim #1). Then we will examine how these imaging signatures link to behavioral performance on neurocognitive tasks that probe these same circuits as well as to clinical profiles (Aim #2). Finally, we will explore how specific environmental features (childhood trauma, socioeconomic status, and religiosity) moderate these brain-behavior associations. DISCUSSION: Using harmonized methods for data collection and analysis, we will conduct the largest neurocognitive and multimodal-imaging study in medication-free subjects with OCD to date. By recruiting a large, ethno-culturally diverse sample, we will test whether there are robust biosignatures of core OCD features that transcend countries and cultures. If so, future studies can use these brain signatures to reveal trans-diagnostic disease dimensions, chart when these signatures arise during development, and identify treatments that target these circuit abnormalities directly. The long-term goal of this research is to change not only how we conceptualize OCD but also how we diagnose and treat it.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Internacionalidade , Imageamento por Ressonância Magnética , Estudos Multicêntricos como Assunto/métodos , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/patologia , Encéfalo/fisiopatologia , Brasil , Estudos de Casos e Controles , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Países Baixos , Transtorno Obsessivo-Compulsivo/patologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Projetos de Pesquisa , Irmãos/psicologia , África do Sul , Estados Unidos , Adulto Jovem
5.
bioRxiv ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39345616

RESUMO

Resilience to emotional disorders is critical for adolescent mental health, especially following childhood abuse. Yet, brain signatures of resilience remain undetermined due to the differential susceptibility of the brain's emotion processing system to environmental stresses. Analyzing brain's responses to angry faces in a longitudinally large-scale adolescent cohort (IMAGEN), we identified two functional networks related to the orbitofrontal and occipital regions as candidate brain signatures of resilience. In girls, but not boys, higher activation in the orbitofrontal-related network was associated with fewer emotional symptoms following childhood abuse, but only when the polygenic burden for depression was high. This finding defined a genetic-dependent brain (GDB) signature of resilience. Notably, this GDB signature predicted subsequent emotional disorders in late adolescence, extending into early adulthood and generalizable to another independent prospective cohort (ABCD). Our findings underscore the genetic modulation of resilience-brain connections, laying the foundation for enhancing adolescent mental health through resilience promotion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa