Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923138

RESUMO

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.

2.
Plant J ; 116(5): 1385-1400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713270

RESUMO

Bread wheat, one of the keystone crops for global food security, is challenged by climate change and resource shortage. The root system plays a vital role in water and nutrient absorption, making it essential for meeting the growing global demand. Here, using an association-mapping population composed of 406 accessions, we identified QTrl.Rs-5B modulating seminal root development with a genome-wide association study and validated its genetic effects with two F5 segregation populations. Transcriptome-wide association study prioritized TaFMO1-5B, a gene encoding the flavin-containing monooxygenases, as the causal gene for QTrl.Rs-5B, whose expression levels correlate negatively with the phenotyping variations among our population. The lines silenced for TaFMO1-5B consistently showed significantly larger seminal roots in different genetic backgrounds. Additionally, the agriculture traits measured in multiple environments showed that QTrl.Rs-5B also affects yield component traits and plant architecture-related traits, and its favorable haplotype modulates these traits toward that of modern cultivars, suggesting the application potential of QTrl.Rs-5B for wheat breeding. Consistently, the frequency of the favorable haplotype of QTrl.Rs-5B increased with habitat expansion and breeding improvement of bread wheat. In conclusion, our findings identified and demonstrated the effects of QTrl.Rs-5B on seminal root development and illustrated that it is a valuable genetic locus for wheat root improvement.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Triticum/genética , Transcriptoma/genética , Pão , Melhoramento Vegetal , Fenótipo , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética
3.
New Phytol ; 241(1): 180-196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691304

RESUMO

Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.


Assuntos
Infertilidade , Triticum , Triticum/genética , Pão , Temperatura Alta , Melhoramento Vegetal , Alelos , Cromossomos , Infertilidade/genética
4.
Mol Biol Rep ; 51(1): 706, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824203

RESUMO

BACKGROUND: Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS: Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS: This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Microinjeções , Mutação , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Microinjeções/métodos , Mutação/genética , Pólen/genética
5.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396706

RESUMO

NAC transcription factors (TFs) are one of the largest TF families in plants, and TaNACs have been known to participate in the regulation of the transcription of many yield-regulating genes in bread wheat. The TaCKX gene family members (GFMs) have already been shown to regulate yield-related traits, including grain mass and number, leaf senescence, and root growth. The genes encode cytokinin (CK) degrading enzymes (CKXs) and are specifically expressed in different parts of developing wheat plants. The aim of the study was to identify and characterize TaNACs involved in the cis-regulation of TaCKX GFMs. After analysis of the initial transcription factor data in 1.5 Kb cis-regulatory sequences of a total of 35 homologues of TaCKX GFMs, we selected five of them, namely TaCKX1-3A, TaCKX22.1-3B, TaCKX5-3D, TaCKX9-1B, and TaCKX10, and identified five TaNAC genes: TaNACJ-1, TaNAC13a, TaNAC94, TaNACBr-1, and TaNAC6D, which are potentially involved in the cis-regulation of selected TaCKX genes, respectively. Protein feature analysis revealed that all of the selected TaNACs have a conserved NAC domain and showed a stable tertiary structure model. The expression profile of the selected TaNACs was studied in 5 day-old seedling roots, 5-6 cm inflorescences, 0, 4, 7, and 14 days-after-pollination (DAP) spikes, and the accompanying flag leaves. The expression pattern showed that all of the selected TaNACs were preferentially expressed in seedling roots, 7 and 14 DAP spikes, and flag leaves compared to 5-6 cm inflorescence and 0 and 4 DAP spikes and flag leaves in Kontesa and Ostka spring wheat cultivars (cvs.). In conclusion, the results of this study highlight the potential role of the selected TaNACs in the regulation of grain productivity, leaf senescence, root growth, and response to various stresses.


Assuntos
Propiofenonas , Fatores de Transcrição , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Família Multigênica , Fenótipo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338970

RESUMO

The obligate biotrophic fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) is the causal agent of wheat powdery mildew disease. The TOPLESS-related 1 (TPR1) corepressor regulates plant immunity, but its role in regulating wheat resistance against powdery mildew remains to be disclosed. Herein, TaTPR1 was identified as a positive regulator of wheat post-penetration resistance against powdery mildew disease. The transient overexpression of TaTPR1.1 or TaTPR1.2 confers wheat post-penetration resistance powdery mildew, while the silencing of TaTPR1.1 and TaTPR1.2 results in an enhanced wheat susceptibility to B.g. tritici. Furthermore, Defense no Death 1 (TaDND1) and Defense no Death 2 (TaDND2) were identified as wheat susceptibility (S) genes facilitating a B.g. tritici infection. The overexpression of TaDND1 and TaDND2 leads to an enhanced wheat susceptibility to B.g. tritici, while the silencing of wheat TaDND1 and TaDND2 leads to a compromised susceptibility to powdery mildew. In addition, we demonstrated that the expression of TaDND1 and TaDND2 is negatively regulated by the wheat transcriptional corepressor TaTPR1. Collectively, these results implicate that TaTPR1 positively regulates wheat post-penetration resistance against powdery mildew probably via suppressing the S genes TaDND1 and TaDND2.


Assuntos
Ascomicetos , Triticum , Triticum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ascomicetos/genética , Erysiphe , Doenças das Plantas/microbiologia , Resistência à Doença/genética
7.
Mol Genet Genomics ; 298(6): 1515-1526, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37851098

RESUMO

Globally, over 2 billion people suffer from malnutrition due to inadequate intake of micronutrients. Genomic-assisted breeding is identified as a valuable method to facilitate developing new improved plant varieties targeting grain yield and micronutrient-related traits. In this study, a genome-wide association study (GWAS) and single- and multi-trait-based genomic prediction (GP) analysis was conducted using a set of 252 elite wheat genotypes from the International Center for Agricultural Research in Dry Areas (ICARDA). The objective was to identify linked SNP markers, putative candidate genes and to evaluate the genomic estimated breeding values (GEBVs) of grain yield and micronutrient-related traits.. For this purpose, a field trial was conducted at a drought-prone station, Merchouch, Morocco for 2 consecutive years (2018 and 2019) followed by GWAS and genomic prediction analysis with 10,173 quality SNP markers. The studied genotypes exhibited a significant genotypic variation in grain yield and micronutrient-related traits. The GWAS analysis identified highly significantly associated markers and linked putative genes on chromosomes 1B and 2B for zinc (Zn) and iron (Fe) contents, respectively. The genomic predictive ability of selenium (Se) and Fe traits with the multi-trait-based GP GBLUP model was 0.161 and 0.259 improving by 6.62 and 4.44%, respectively, compared to the corresponding single-trait-based models. The identified significantly linked SNP markers, associated putative genes, and developed GP models could potentially facilitate breeding programs targeting to improve the overall genetic gain of wheat breeding for grain yield and biofortification of micronutrients via marker-assisted (MAS) and genomic selection (GS) methods.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Humanos , Triticum/genética , Locos de Características Quantitativas/genética , Micronutrientes , Melhoramento Vegetal/métodos , Secas , Grão Comestível/genética , Genômica
8.
Planta ; 257(6): 104, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115268

RESUMO

MAIN CONCLUSION: The study provided an insight toward better understanding of stay-green mechanisms for drought tolerance improvement and identified that synthetic-derived wheats proved as a promising germplasm for improved tolerance against water stress. Stay-green (SG) trait is considered to be related with the ability of wheat plants to maintain photosynthesis and CO2 assimilation. The present study explored the interaction of water stress with SG expression through physio-biochemical, agronomic and phenotypic responses among diverse wheat germplasm comprising of 200 synthetic hexaploids, 12 synthetic derivatives, 97 landraces and 16 conventional bread wheat varieties, for 2 years. The study established that variation of SG trait existed in the studied wheat germplasm and there was positive association between SG trait and tolerance to water stress. The relationship of SG trait with chlorophyll content (r = 0.97), ETR (r = 0.28), GNS (r = 0.44), BMP (r = 0.34) and GYP (r = 0.44) was particularly promising under water stress environment. Regarding chlorophyll fluorescence, the positive correlation of фPSII (r = 0.21), qP (r = 0.27) and ETR (r = 0.44) with grain yield per plant was noted. The improved ΦPSII and Fv/Fm of PSII photochemistry resulted in the high photosynthesis activity in SG wheat genotypes. Regarding relative water content and photochemical quenching coefficient, synthetic-derived wheats were better by maintaining 20.9, 9.8 and 16.1% more RWC and exhibiting 30.2, 13.5 and 17.9% more qP when compared with landraces, varieties and synthetic hexaploids, respectively, under water stress environment. Synthetic derived wheats also exhibited relatively more SG character with good yield and were more tolerant to water stress in terms of grain yield, grain weight per plant, better photosynthetic performance through chlorophyll fluorescence measurement, high leaf chlorophyll and proline content, and hence, may be used as novel sources for breeding drought tolerant materials. The study will further facilitate research on wheat leaf senescence and will add to better understanding of SG mechanisms for drought tolerance improvement.


Assuntos
Pão , Triticum , Triticum/fisiologia , Desidratação/metabolismo , Fluorescência , Melhoramento Vegetal , Fotossíntese , Clorofila/metabolismo , Folhas de Planta/genética , Secas
9.
J Exp Bot ; 74(9): 2860-2874, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633860

RESUMO

The ability of plants to respond to changes in the environment is crucial to their survival and reproductive success. The impact of increasing the atmospheric CO2 concentration (a[CO2]), mediated by behavioral and developmental responses of stomata, on crop performance remains a concern under all climate change scenarios, with potential impacts on future food security. To identify possible beneficial traits that could be exploited for future breeding, phenotypic variation in morphological traits including stomatal size and density, as well as physiological responses and, critically, the effect of growth [CO2] on these traits, was assessed in six wheat relative accessions (including Aegilops tauschii, Triticum turgidum ssp. Dicoccoides, and T. turgidum ssp. dicoccon) and five elite bread wheat T. aestivum cultivars. Exploiting a range of different species and ploidy, we identified key differences in photosynthetic capacity between elite hexaploid wheat and wheat relatives. We also report differences in the speed of stomatal responses which were found to be faster in wheat relatives than in elite cultivars, a trait that could be useful for enhanced photosynthetic carbon gain and water use efficiency. Furthermore, these traits do not all appear to be influenced by elevated [CO2], and determining the underlying genetics will be critical for future breeding programmes.


Assuntos
Dióxido de Carbono , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Fotossíntese
10.
Mol Breed ; 43(11): 76, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37873506

RESUMO

Bread wheat (Triticum aestivum L.) is a global staple crop vital for human nutrition. Heading date (HD) and flowering date (FD) are critical traits influencing wheat growth, development, and adaptability to diverse environmental conditions. A comprehensive study were conducted involving 190 bread wheat accessions to unravel the genetic basis of HD and FD using high-throughput genotyping and multi-environment field trials. Seven independent quantitative trait loci (QTLs) were identified to be significantly associated with HD and FD using two GWAS methods, which explained a proportion of phenotypic variance ranging from 1.43% to 9.58%. Notably, QTLs overlapping with known vernalization genes Vrn-D1 were found, validating their roles in regulating flowering time. Moreover, novel QTLs on chromosome 2A, 5B, 5D, and 7B associated with HD and FD were identified. The effects of these QTLs on HD and FD were confirmed in an additional set of 74 accessions across different environments. An increase in the frequency of alleles associated with early flowering in cultivars released in recent years was also observed, suggesting the influence of molecular breeding strategies. In summary, this study enhances the understanding of the genetic regulation of HD and FD in bread wheat, offering valuable insights into crop improvement for enhanced adaptability and productivity under changing climatic conditions. These identified QTLs and associated markers have the potential to improve wheat breeding programs in developing climate-resilient varieties to ensure food security. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01422-z.

11.
Breed Sci ; 73(5): 445-449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38737920

RESUMO

Tan spot, a foliar disease of Triticum spp. such as bread wheat (T. aestivum L.) and durum wheat (T. turgidum ssp. durum (Desf.) Husn.) caused by the filamentous fungus Pyrenophora tritici-repentis (Died.) Drechsler leads to serious losses of crop yield and quality in some areas in Japan. P. tritici-repentis is classified into eight races according to the combinations of three necrotrophic effectors, PtrToxA, PtrToxB, and PtrToxC encoded by ToxA, ToxB, and ToxC1, respectively. Race classification has been based on reaction of a differential variety to necrotrophic effectors, which is tested by inoculation. Recent identification of the Tox genes and development of specific DNA markers have enabled us to classify races of P. tritici-repentis collected in Japan by Tox gene genotyping. We found that 17 strains collected from Triticum spp. in Japan were mainly race 1 or 2, because they carried ToxA as a toxin gene by current race classification; wheat genotype tsn1 is resistant to ToxA. Establishment of wheat cultivars carrying tsn1 would be most effective for decreasing agronomic losses caused by the disease in Japan.

12.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445670

RESUMO

Root architecture is key in determining how effective plants are at intercepting and absorbing nutrients and water. Previously, the wheat (Triticum aestivum) cultivars Spica and Maringa were shown to have contrasting root morphologies. These cultivars were crossed to generate an F6:1 population of recombinant inbred lines (RILs) which was genotyped using a 90 K single nucleotide polymorphisms (SNP) chip. A total of 227 recombinant inbred lines (RILs) were grown in soil for 21 days in replicated trials under controlled conditions. At harvest, the plants were scored for seven root traits and two shoot traits. An average of 7.5 quantitative trait loci (QTL) were associated with each trait and, for each of these, physical locations of the flanking markers were identified using the Chinese Spring reference genome. We also compiled a list of genes from wheat and other monocotyledons that have previously been associated with root growth and morphology to determine their physical locations on the Chinese Spring reference genome. This allowed us to determine whether the QTL discovered in our study encompassed genes previously associated with root morphology in wheat or other monocotyledons. Furthermore, it allowed us to establish if the QTL were co-located with the QTL identified from previously published studies. The parental lines together with the genetic markers generated here will enable specific root traits to be introgressed into elite wheat lines. Moreover, the comprehensive list of genes associated with root development, and their physical locations, will be a useful resource for researchers investigating the genetics of root morphology in cereals.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico , Fenótipo , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único
13.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446364

RESUMO

Raffinose synthase (RS) plays a crucial role in plant growth and development, as well as in responses to biotic stresses and abiotic stresses, yet few studies have been conducted on its role in bread wheat. Therefore, in this study we screened and identified a family of bread wheat raffinose synthase genes based on bread wheat genome information and analyzed their physicochemical properties, phylogenetic evolutionary relationships, conserved structural domains, promoter cis-acting elements, and expression patterns. The BSMV-induced silencing of TaRS15-3B resulted in the bread wheat seedlings being susceptible to drought and salt stress and reduced the expression levels of stress-related and ROS-scavenging genes in bread wheat plants. This further affected the ability of bread wheat to cope with drought and salt stress. In conclusion, this study revealed that the RS gene family in bread wheat plays an important role in plant response to abiotic stresses and that the TaRS15-3B gene can improve the tolerance of transgenic bread wheat to drought and salt stresses, provide directions for the study of other RS gene families in bread wheat, and supply candidate genes for use in molecular breeding of bread wheat for stress resistance.


Assuntos
Resistência à Seca , Tolerância ao Sal , Tolerância ao Sal/genética , Triticum/metabolismo , Filogenia , Pão , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
J Sci Food Agric ; 103(10): 4975-4982, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36960792

RESUMO

BACKGROUND: Continuous development of new wheat varieties is necessary to satisfy the demands of farmers, industry, and consumers. The evaluation of candidate genotypes for commercial release under different on-farm conditions is a strategy that has been strongly recommended to assess the performance and stability of new cultivars in heterogeneous environments and under different farming systems. The main objectives of this study were to evaluate the grain yield and quality performance of ten different genotypes across six contrasting farmers' field conditions with different irrigation and nitrogen fertilization levels, and to develop suggestions to aid breeding programs and farmers to use resources more efficiently. Genotype and genotype by environment (GGE) interaction biplot analyses were used to identify the genotypes with the strongest performance and greatest stability in the Yaqui Valley. RESULTS: Analyses showed that some traits were mainly explained by the genotype effect, others by the field management conditions, and the rest by combined effects. The most representative and diverse field conditions in the Yaqui Valley were also identified, a useful strategy when breeders have limited resources. The independent effects of irrigation and nitrogen levels and their interaction were analyzed for each trait. The results showed that full irrigation was not always necessary to maximize grain yield in the Yaqui Valley. Other suggestions for more efficient use of resources are proposed. CONCLUSIONS: The combination of on-farm trials with GGE interaction analyses is an effective strategy to include in breeding programs to improve processes and resources. Identifying the most outstanding and stable genotypes under real on-farm systems is key to the development of novel cultivars adapted to different management and environmental conditions. © 2023 Society of Chemical Industry.


Assuntos
Pão , Triticum , Triticum/genética , Fazendas , Pão/análise , Melhoramento Vegetal , Genótipo , Grão Comestível , Nitrogênio
15.
Environ Monit Assess ; 195(5): 533, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010642

RESUMO

In this study, precipitation; temperature (maximum, minimum, and average temperature) values of Eskisehir, Konya, Afyonkarahisar, Usak, and Kütahya for years (2007-2018); and protein content, macro sedimentation (MSDS), thousand kernel weight (KW), test weight (TW) relations, and the effect of climate values on quality were investigated. The Kriging method was used by ArcGIS software for creating quality maps of Eskisehir, Konya, Afyonkarahisar, Usak, and Kütahya provinces in the light of obtained data from these examined quality criteria, yield, and climate factors. The quality of bread wheat, which includes protein content, macro sedimentation, thousand kernel weight, and test weight, is highly affected by the subject precipitation, maximum temperature, minimum temperature, average temperature, and precipitation. While the months of November, March, and April and the total annual precipitations affect the quality, the most effective precipitation is the months of April and November. Again, the fact that the winter months are hot, especially in January and February, causes the plant to be inadequate to withstand the winter, causing the plant to be more affected by the low temperatures in the early spring and to reduce the quality due to insufficient plant growth. Climatic factors affect quality in total, not alone, but cumulatively. It was concluded that the best quality wheat can be obtained from Konya, Eskisehir, and Afyonkarahisar provinces. It was concluded that ESOGÜ quality index (EQI), evaluating and integrating protein content, macro sedimentation, thousand kernel weight, and test weigh together, can be used safely in bread wheat genotypes.


Assuntos
Pão , Triticum , Monitoramento Ambiental , Clima , Estações do Ano
16.
Plant J ; 105(5): 1374-1389, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33283912

RESUMO

The molecular mechanism of high-temperature stress (HTS) response, in plants, has so far been investigated using transcriptomics, while the dynamics of HTS-responsive proteome remain unexplored. We examined the adaptive responses of the resilient wheat cultivar 'Unnat Halna' and dissected the HTS-responsive proteome landscape. This led to the identification of 55 HTS-responsive proteins (HRPs), which are predominantly involved in metabolism and defense pathways. Interestingly, HRPs included a 2-cysteine peroxiredoxin (2CP), designated Ta2CP, presumably involved in stress perception and adaptation. Complementation of Ta2CP in yeast and heterologous expression in Arabidopsis demonstrated its role in thermotolerance. Both Ta2CP silencing and overexpression inferred the involvement of Ta2CP in plant growth and chlorophyll biosynthesis. We demonstrated that Ta2CP interacts with protochlorophyllide reductase b, TaPORB. Reduced TaPORB expression was found in Ta2cp-silenced plants, while upregulation was observed in Ta2CP-overexpressed plants. Furthermore, the downregulation of Ta2CP in Taporb-silenced plants and reduction of protochlorophyllide in Ta2cp-silenced plants suggested the key role of Ta2CP in chlorophyll metabolism. Additionally, the transcript levels of AGPase1 and starch were increased in Ta2cp-silenced plants. More significantly, HTS-treated Ta2cp-silenced plants showed adaptive responses despite increased reactive oxygen species and peroxide concentrations, which might help in rapid induction of high-temperature acclimation.


Assuntos
Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas de Plantas/genética , Triticum/genética
17.
Plant J ; 106(1): 86-94, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33369792

RESUMO

Most alpha-gliadin genes of the Gli-D2 locus on the D genome of hexaploid bread wheat (Triticum aestivum) encode for proteins with epitopes that can trigger coeliac disease (CD), and several contain a 33-mer peptide with six partly overlapping copies of three epitopes, which is regarded as a remarkably potent T-cell stimulator. To increase genetic diversity in the D genome, synthetic hexaploid wheat lines are being made by hybridising accessions of Triticum turgidum (AB genome) and Aegilops tauschii (the progenitor of the D genome). The diversity of alpha-gliadins in A. tauschii has not been studied extensively. We analysed the alpha-gliadin transcriptome of 51 A. tauschii accessions representative of the diversity in A. tauschii. We extracted RNA from developing seeds and performed 454 amplicon sequencing of the first part of the alpha-gliadin genes. The expression profile of allelic variants of the alpha-gliadins was different between accessions, and also between accessions of the Western and Eastern clades of A. tauschii. Generally, both clades expressed many allelic variants not found in bread wheat. In contrast to earlier studies, we detected the 33-mer peptide in some A. tauschii accessions, indicating that it was introduced along with the D genome into bread wheat. In these accessions, transcripts with the 33-mer peptide were present at lower frequencies than in bread wheat varieties. In most A. tauschii accessions, however, the alpha-gliadins do not contain the epitope, and this may be exploited, through synthetic hexaploid wheats, to breed bread wheat varieties with fewer or no coeliac disease epitopes.


Assuntos
Aegilops/imunologia , Aegilops/metabolismo , Doença Celíaca/imunologia , Epitopos de Linfócito T/imunologia , Gliadina/imunologia , Triticum/imunologia , Epitopos de Linfócito T/metabolismo , Evolução Molecular , Gliadina/metabolismo , Triticum/metabolismo
18.
BMC Genomics ; 23(1): 73, 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35065618

RESUMO

BACKGROUND: Bread wheat (Triticum aestivum) is an important staple cereal grain worldwide. The ever-increasing environmental stress makes it very important to mine stress-resistant genes for wheat breeding programs. Therefore, dehydrin (DHN) genes can be considered primary candidates for such programs, since they respond to multiple stressors. RESULTS: In this study, we performed a genome-wide analysis of the DHN gene family in the genomes of wheat and its three relatives. We found 55 DHN genes in T. aestivum, 31 in T. dicoccoides, 15 in T. urartu, and 16 in Aegilops tauschii. The phylogenetic, synteny, and sequence analyses showed we can divide the DHN genes into five groups. Genes in the same group shared similar conserved motifs and potential function. The tandem TaDHN genes responded strongly to drought, cold, and high salinity stresses, while the non-tandem genes respond poorly to all stress conditions. According to the interaction network analysis, the cooperation of multiple DHN proteins was vital for plants in combating abiotic stress. CONCLUSIONS: Conserved, duplicated DHN genes may be important for wheat being adaptable to a different stress conditions, thus contributing to its worldwide distribution as a staple food. This study not only highlights the role of DHN genes help the Triticeae species against abiotic stresses, but also provides vital information for the future functional studies in these crops.


Assuntos
Pão , Triticum , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Triticum/genética , Triticum/metabolismo
19.
Funct Integr Genomics ; 23(1): 20, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564499

RESUMO

Amylose fraction of grain starch is correlated with a type of resistant starch with better nutritional quality. Granule-bound starch synthase I (GBSSI) is the known starch synthase, responsible for elongation of linear amylose chains. GBSSI expression, activity, and binding to starch and other proteins are the key factors that can affect amylose content. Previously, a QTL, qhams7A.1 carrying GBSSI mutant allele, was identified through QTL mapping using F2 population of the high amylose mutant line, 'TAC 75'. This high amylose mutant line has >2-fold higher amylose content than wild variety 'C 306'. In this study, we characterized this novel mutant allele, GBSSI.L539P. In vitro starch synthase activity of GBSSI.L539P showed improved activity than the wild type (GBSSI-wt). When expressed in yeast glycogen synthase mutants (Δgsy1gsy2), GBSSI-wt and GBSSI.L539P partially complemented the glycogen synthase (gsy1gsy2) activity in yeast. Structural analysis by circular dichroism (CD) and homology modelling showed no significant structural distortion in the mutant enzyme. Molecular docking studies suggested that the residue Leu539 is distant from the catalytic active site (ADP binding pocket) and had no detectable conformational changes in active site. Both wild and mutant enzymes were assayed for starch binding in vitro, and demonstrating higher affinity of the GBSSI.L539P mutant for starch than the wild type. The present study indicated that distant residue (L539P) influenced GBSSI activity by affecting its starch-binding ability. Therefore, it may be a potential molecular target for enhanced amylose content in grain.


Assuntos
Sintase do Amido , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose/metabolismo , Triticum/metabolismo , Glicogênio Sintase/metabolismo , Alelos , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/metabolismo , Amido
20.
New Phytol ; 235(5): 1743-1756, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35586964

RESUMO

Although stomata are typically found in greater numbers on the abaxial surface, wheat flag leaves have greater densities on the adaxial surface. We determine the impact of this less common stomatal patterning on gaseous fluxes using a novel chamber that simultaneously measures both leaf surfaces. Using a combination of differential illuminations and CO2 concentrations at each leaf surface, we found that mesophyll cells associated with the adaxial leaf surface have a higher photosynthetic capacity than those associated with the abaxial leaf surface, which is supported by an increased stomatal conductance (driven by differences in stomatal density). When vertical gas flux at the abaxial leaf surface was blocked, no compensation by adaxial stomata was observed, suggesting each surface operates independently. Similar stomatal kinetics suggested some co-ordination between the two surfaces, but factors other than light intensity played a role in these responses. Higher photosynthetic capacity on the adaxial surface facilitates greater carbon assimilation, along with higher adaxial stomatal conductance, which would also support greater evaporative leaf cooling to maintain optimal leaf temperatures for photosynthesis. Furthermore, abaxial gas exchange contributed c. 50% to leaf photosynthesis and therefore represents an important contributor to overall leaf gas exchange.


Assuntos
Estômatos de Plantas , Triticum , Dióxido de Carbono/farmacologia , Gases , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa