Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Wellcome Open Res ; 8: 336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38404635

RESUMO

We present genome assemblies from two male Aricia agestis specimens (the Brown Argus; Arthropoda; Insecta; Lepidoptera; Lycaenidae). The genome sequences are 435.3 and 437.4 megabases in span. Each assembly is scaffolded into 23 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genomes were assembled and are 15.47 and 15.45 kilobases in length. Gene annotation of these assemblies on Ensembl identified 12,688 and 12,654 protein coding genes.

2.
Wellcome Open Res ; 7: 314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37389324

RESUMO

We present a genome assembly from an individual Aricia artaxerxes (the northern brown argus; Arthropoda; Insecta; Lepidoptera; Lycaenidae). The genome sequence is 458 megabases in span. Most of the assembly (99.99%) is scaffolded into 23 chromosomal pseudomolecules, including the assembled Z sex chromosome. The mitochondrial genome has also been assembled and is 15.8 kilobases in length. Gene annotation of this assembly on Ensembl has identified 12,688 protein coding genes.

3.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210021, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184597

RESUMO

Climate-driven geographic range shifts have been associated with transitions between dietary specialism and generalism at range margins. The mechanisms underpinning these often transient niche breadth modifications are poorly known, but utilization of novel resources likely depends on phenological synchrony between the consumer and resource. We use a climate-driven range and host shift by the butterfly Aricia agestis to test how climate-driven changes in host phenology and condition affect phenological synchrony, and consider implications for host use. Our data suggest that the perennial plant that was the primary host before range expansion is a more reliable resource than the annual Geraniaceae upon which the butterfly has become specialized in newly colonized parts of its range. In particular, climate-driven phenological variation in the novel host Geranium dissectum generates a narrow and variable 'window of opportunity' for larval productivity in summer. Therefore, although climatic change may allow species to shift hosts and colonise novel environments, specialization on phenologically limited hosts may not persist at ecological margins as climate change continues. We highlight the potential role for phenological (a)synchrony in determining lability of consumer-resource associations at range margins and the importance of considering causes of synchrony in biotic interactions when predicting range shifts. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Assuntos
Borboletas , Herbivoria , Animais , Mudança Climática , Insetos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa