RESUMO
Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of temperature and relative humidity (RH) on whitening has not been well constrained, leading to uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also depends strongly on these conditions. The measured whitening rate of BrC is described well with the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model of this whitening process, and we show that the lifetime of BrC is 1 d or less below â¼1 km in altitude in the atmosphere but is often much longer than 1 d above this altitude. Including this altitude dependence of the whitening rate in a chemical transport model causes a large change in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and temperature need to be considered to understand the role of BBOA in the atmosphere.
Assuntos
Atmosfera , Biomassa , Carbono , Atmosfera/química , Carbono/análise , OzônioRESUMO
Brown carbon (BrC) has a substantial direct radiative effect, but current estimates of its impact on radiative balance are highly uncertain due to a lack of measurements of its light-absorbing properties, such as mass absorption efficiency (MAE). Here, we present a new analytical paradigm based on a Bayesian inference (BI) model that takes multiwavelength aethalometer measurements and total carbon data to resolve the concentrations of black carbon and BrC, and MAEs of BrC on a sample-by-sample basis. Hourly MAEs, unattainable in previous studies, can now be calculated, enabling the first-time observation of the darkening-bleaching dynamics of BrC in response to photochemical transformation. We demonstrate the application of this BI model to analyze measurements collected over one year (2021-2022) in Hong Kong. Diel variations in MAE370 nm of BrC reveal a darkening-to-bleaching transition occurring between 8 and 10 O'clock when the solar irradiance ranges from 30 to 400 W m-2. Furthermore, we consistently observe an increase in MAE370 nm of BrC with nitrogen oxide concentrations, suggesting the enhanced formation of nitrogenous organics. This BI model-based data analysis would bring forth a breakthrough in amassing observation data of BrC and its MAEs in diverse ambient environments and with high time resolution.
Assuntos
Carbono , Teorema de Bayes , Monitoramento Ambiental/métodosRESUMO
Peatland wildfires contribute significantly to the atmospheric release of light-absorbing organic carbon, often referred to as brown carbon. In this study, we examine the presence of nitrogen-containing organic compounds (NOCs) within marine aerosols across the Western Pacific Ocean, which are influenced by peatland fires from Southeast Asia. Employing ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in electrospray ionization (ESI) positive mode, we discovered that NOCs are predominantly composed of reduced nitrogenous bases, including CHN+ and CHON+ groups. Notably, the count of NOC formulas experiences a marked increase within plumes from peatland wildfires compared to those found in typical marine air masses. These NOCs, often identified as N-heterocyclic alkaloids, serve as potential light-absorbing chromophores. Furthermore, many NOCs demonstrate pyrolytic stability, engage in a variety of substitution reactions, and display enhanced hydrophilic properties, attributed to chemical processes such as methoxylation, hydroxylation, methylation, and hydrogenation that occur during emission and subsequent atmospheric aging. During the daytime atmospheric transport, aging of aromatic N-heterocyclic compounds, particularly in aliphatic amines prone to oxidation and reactions with amine, was observed. The findings underscore the critical role of peatland wildfires in augmenting nitrogen-containing organics in marine aerosols, underscoring the need for in-depth research into their effects on marine ecosystems and regional climatic conditions.
Assuntos
Aerossóis , Nitrogênio/análise , Compostos Orgânicos/análise , Incêndios Florestais , Oceano PacíficoRESUMO
Volatile chemical products (VCPs) are increasingly recognized as significant sources of volatile organic compounds (VOCs) in urban atmospheres, potentially serving as key precursors for secondary organic aerosol (SOA) formation. This study investigates the formation and physicochemical transformations of VCP-derived SOA, produced through ozonolysis of VOCs evaporated from a representative room deodorant air freshener, focusing on the effects of aerosol evaporation on its molecular composition, light absorption properties, and reactive oxygen species (ROS) generation. Following aerosol evaporation, solutes become concentrated, accelerating reactions within the aerosol matrix that lead to a 42% reduction in peroxide content and noticeable browning of the SOA. This process occurs most effectively at moderate relative humidity (â¼40%), reaching a maximum solute concentration before aerosol solidification. Molecular characterization reveals that evaporating VCP-derived SOA produces highly conjugated nitrogen-containing products from interactions between existing or transformed carbonyl compounds and reduced nitrogen species, likely acting as chromophores responsible for the observed brownish coloration. Additionally, the reactivity of VCP-derived SOA was elucidated through heterogeneous oxidation of sulfur dioxide (SO2), which revealed enhanced photosensitized sulfate production upon drying. Direct measurements of ROS, including singlet oxygen (1O2), superoxide (O2â¢-), and hydroxyl radicals (â¢OH), showed higher abundances in dried versus undried SOA samples under light exposure. Our findings underscore that drying significantly alters the physicochemical properties of VCP-derived SOA, impacting their roles in atmospheric chemistry and radiative balance.
Assuntos
Aerossóis , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Oxirredução , Poluentes Atmosféricos/química , Espécies Reativas de Oxigênio/química , Atmosfera/químicaRESUMO
The global increase in wildfires, primarily driven by climate change, significantly affects air quality and health. Wildfire-emitted particulate matter (WFPM) is linked to adverse health effects, yet the toxicological mechanisms are not fully understood given its physicochemical complexity and the lack of spatiotemporal exposure data. This study focuses on the physicochemical characterization of WFPM from a Canadian wildfire in June 2023, which affected over 100 million people in the US Northeast, particularly around New Jersey/New York. Aerosol systems were deployed to characterize WFPM during the 3 day event, revealing unprecedented mass concentrations mainly in the WFPM0.1 and WFPM0.1-2.5 size fractions. Peak WFPM2.5 concentrations reached 317 µg/m3, nearly 10 times the National Ambient Air Quality Standard (NAAQS) 24 h average limit. Chemical analysis showed a high organic-to-total carbon ratio (96%), consistent with brown carbon wildfires nanoparticles. Large concentrations of high-molecular-weight PAHs were found predominantly bound to WFPM0.1, with retene, a molecular marker of biomass burning and a known teratogen, being the most abundant (>70%). Computational modeling estimated a total lung deposition of 9.15 mg over 72 h, highlighting the health risks of WFPM, particularly due to its long-distance travel capability and impact on densely populated areas.
Assuntos
Material Particulado , Incêndios Florestais , New Jersey , Material Particulado/análise , Cidade de Nova Iorque , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Quebeque , Poluição do Ar , Canadá , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
Brown carbon (BrC) from biomass burning constitutes a significant portion of light-absorbing components in the atmosphere. Although the aging of BrC surrogates from biomass burning has been studied in many laboratory settings, BrC aging behavior in real-world urban environments is not well understood. In this study, through a combination of online dynamic monitoring and offline molecular characterization, the ambient optical aging of BrC was linked to its dynamic changes in molecular composition. Enhanced light absorption by BrC was consistently observed during the periods dominated by oxygenated biomass burning organic aerosol (BBOA), in contrast to periods dominated by primary emissions or secondary formation in aqueous-phase. This enhancement was linked to the formation of nitrogen-containing compounds during the ambient aging of BBOA. Detailed molecular characterization, alongside analysis of environmental parameters, revealed that an increased atmospheric oxidizing capacity, marked by elevated levels of ozone and nighttime NO3 radicals, facilitated the formation of nitrated aromatic BrC chromophores. These chromophores were primarily responsible for the enhanced light absorption during the ambient aging of BBOA. This study elucidates the nitration processes that enhance BrC light absorption for ambient BBOA, and highlights the crucial role of meteorological conditions. Furthermore, our findings shed light on the chemical and optical aging processes of biomass burning BrC in ambient air, offering insights into its environmental behavior and effects.
Assuntos
Biomassa , Carbono , Aerossóis , Oxirredução , Poluentes Atmosféricos , Atmosfera/químicaRESUMO
The NO3â¢-driven nighttime aging of brown carbon (BrC) is known to greatly impact its atmospheric radiative forcing. However, the impact of oxidation by NO3⢠on the optical properties of BrC in atmospheric waters as well as the associated reaction mechanism remain unclear. In this work, we found that the optical variation of BrC proxies under environmentally relevant NO3⢠exposure depends strongly on their sources, with enhanced light absorptivity for biomass-burning BrC but bleaching for urban aerosols and humic substances. High-resolution mass spectrometry using FT-ICR MS shows that oxidation by NO3⢠leads to the formation of light-absorbing species (e.g., nitrated organics) for biomass-burning BrC while destroying electron donors (e.g., phenols) within charge transfer complexes in urban aerosols and humic substances, as evidenced by transient absorption spectroscopy and NaBH4 reduction experiments as well. Moreover, we found that the measured rate constants between NO3⢠with real BrCs (k = (1.8 ± 0.6) × 107 MC-1s-1, expressed as moles of carbon) are much higher than those of individual model organic carbon (OC), suggesting the reaction with OCs may be a previously ill-quantified important sink of NO3⢠in atmospheric waters. This work provides insights into the kinetics and molecular transformation of BrC during the oxidation by NO3â¢, facilitating further evaluation of BrC's climatic effects and atmospheric NO3⢠levels.
RESUMO
Aqueous-phase reactions of α-dicarbonyls with amines or ammonium have been identified as important sources of secondary brown carbon (BrC). However, the kinetics of BrC formation and the effects of pH are still not very clear. In this study, the kinetics of BrC formation by aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or alkylamines in bulk solution at different pH values are investigated. Our results reveal pH-parameterized BrC production rate constants, kBrCII (m-1 [M]-2 s-1), based on the light absorption between 300 and 500 nm: log10(kBrCII) = (1.0 ± 0.1) × pH - (7.4 ± 1.0) for reactions with glyoxal and log10(kBrCII) = (1.0 ± 0.1) × pH - (6.3 ± 0.9) for reactions with methylglyoxal. The linear slopes closing to 1.0 indicate that BrC formation is governed by the nitrogen nucleophilic addition pathway. Consequently, the absorptivities of the produced BrC increase exponentially with the increase of pH. BrC from reactions with methylglyoxal at higher pH (≥6.5) exhibits optical properties comparable to BrC from biomass burning or coal combustion, categorized as the "weakly" absorbing BrC, while BrC from reactions with methylglyoxal at lower pH (<6.0) or reactions with glyoxal (pH 5.0-7.0) falls into the "very weakly" absorbing BrC. The pH-dependent BrC feature significantly affects the solar absorption ability of the produced BrC and thus the atmospheric photochemical processes, e.g., BrC produced at pH 7.0 absorbs 14-16 times more solar power compared to that at pH 5.0, which in turn could lead to a decrease of 1 order of magnitude in the photolysis rate constants of O3 and NO2.
Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Aldeído Pirúvico/química , Fotoquímica , Carbono , Aerossóis/análise , Aminas , Glioxal , Água/química , Concentração de Íons de HidrogênioRESUMO
Uncertain chemical mechanisms leading to brown carbon (BrC) formation affect the drivers of the radiative effects of aerosols in current climate predictions. Herein, the aqueous-phase reactions of methylglyoxal (MG) and typical reduced nitrogen species (RNSs) are systematically investigated by using combined quantum chemical calculations and laboratory experiments. Imines and diimines are identified from the mixtures of methylamine (MA) and ammonia (AM) with MG, but not from dimethylamine (DA) with the MG mixture under acidic conditions, because deprotonation of DA cationic intermediates is hindered by the amino groups occupied by two methyl groups. It leads to N-heterocycle (NHC) formation in the MG + MA (MGM) and MG + AM (MGA) reaction systems but to N-containing chain oligomer formation in the MG + DA (MGD) reaction system. Distinct product formation is attributed to electrostatic attraction and steric hindrance, which are regulated by the methyl groups of RNSs. The light absorption and adverse effects of NHCs are also strongly related to the methyl groups of RNSs. Our finding reveals that BrC formation is mainly contributed from MG reaction with RNSs with less methyl groups, which have more abundant and broad sources in the urban environments.
Assuntos
Poluentes Atmosféricos , Dimetilaminas , Aldeído Pirúvico , Carbono , Nitrogênio , Metilaminas , Aerossóis/análiseRESUMO
Particulate brown carbon (BrC) plays a crucial role in the global radiative balance due to its ability to absorb light. However, the effect of molecular formation on the light absorption properties of BrC remains poorly understood. In this study, atmospheric BrC samples collected from six Chinese megacities in winter and summer were characterized through ultrahigh-performance liquid chromatography coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap MS) and light absorption measurements. The average values of BrC light absorption coefficient at a wavelength of 365 nm (babs365) in winter were approximately 4.0 times higher than those in summer. Nitrogen-containing organic molecules (CHNO) were identified as critical components of light-absorbing substances in both seasons, underscoring the importance of N-addition in BrC. These nitrogen-containing BrC chromophores were more closely related to nitro-containing compounds originating from biomass burning and nitrogen oxides (NOx)/nitrate (NO3-) reactions in winter. In summer, they were related to reduced N-containing compounds formed in ammonia (NH3)/ammonium (NH4+) reactions. The NH3/NH4+-mediated reactions contributed more to secondary BrC in summer than winter, particularly in southern cities. Compared with winter, the higher O/Cw, lower molecule conjugation indicator (double bond equivalent, DBE), and reduced BrC babs365 in summer suggest a possible bleaching mechanism during the oxidation process. These findings strengthen the connection between molecular composition and the light-absorbing properties of BrC, providing insights into the formation mechanisms of BrC chromophores across northern and southern Chinese cities in different seasons.
Assuntos
Poluentes Atmosféricos , Carbono , Cidades , Nitrogênio/análise , Aerossóis/análise , Carvão Mineral/análise , Nitrocompostos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análiseRESUMO
Biomass burning organic aerosol (BBOA), containing brown carbon chromophores, plays a critical role in atmospheric chemistry and climate forcing. However, the effects of evaporation on BBOA volatility and viscosity under different environmental conditions remain poorly understood. This study focuses on the molecular characterization of laboratory-generated BBOA proxies from wood pyrolysis emissions. The initial mixture, "pyrolysis oil (PO1)", was progressively evaporated to produce more concentrated mixtures (PO1.33, PO2, and PO3) with volume reduction factors of 1.33, 2, and 3, respectively. Chemical speciation and volatility were investigated using temperature-programmed desorption combined with direct analysis in real-time ionization and high-resolution mass spectrometry (TPD-DART-HRMS). This novel approach quantified saturation vapor pressures and enthalpies of individual species, enabling the construction of volatility basis set distributions and the quantification of gas-particle partitioning. Viscosity estimates, validated by poke-flow experiments, showed a significant increase with evaporation, slowing particle-phase diffusion and extending equilibration times. These findings suggest that highly viscous tar ball particles in aged biomass burning emissions form as semivolatile components evaporate. The study highlights the importance of evaporation processes in shaping BBOA properties, underscoring the need to incorporate these factors into atmospheric models for better predictions of BBOA aging and its environmental impact.
Assuntos
Aerossóis , Carbono , Carbono/química , Viscosidade , Atmosfera/química , Biomassa , GasesRESUMO
Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.
Assuntos
Aerossóis , Oxirredução , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , LuzRESUMO
Climate change has exacerbated fire activity in the boreal region. Consequently, smoldering boreal peatland fires are an increasingly important source of light-absorbing atmospheric organic carbon ("brown carbon"; BrC). To date, however, BrC from this source remains largely unstudied, which limits our ability to predict its climate impact. Here, we use size-exclusion chromatography coupled with diode array UV-vis detection to examine the molecular-size-dependent light absorption properties of fresh and photoaged aqueous BrC extracts collected during laboratory combustion of boreal peat and live spruce foliage. The atmospheric stability of BrC extracts varies with chromophore molecular size and fuel type: in particular, the high-molecular-weight fractions of both peat- and spruce-BrC are more resistant to photobleaching than their corresponding low-molecular-weight fractions, and total light absorption by peat-BrC persists over longer illumination timescales than that of spruce-BrC. Importantly, the BrC molecular size distribution itself varies with fuel properties (e.g., moisture content) and to an even greater extent with fuel type. Overall, our findings suggest that the accurate estimation of BrC radiative forcing, and the overall climate impact of wildfires, will require atmospheric models to consider the impact of regional diversity in vegetation/fuel types.
Assuntos
Poluentes Atmosféricos , Carbono , Solo , Aerossóis/análise , Biomassa , Peso Molecular , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análiseRESUMO
Brown carbon (BrC) is one of the important light absorption substances that have high light absorption ability under short wavelength light. However, limit studies have focused on the BrC emission from ships. In this study, size-segregated particulate matters (PM) were collected from three different types of ships, light absorption characteristics and size distribution of methanol-soluble BrC and water-soluble BrC in PM from ship exhausts were investigated. Results showed that four-stroke low-power diesel fishing boat (4-LDF) had the highest mass concentrations of methanol-soluble organic carbon (MSOC) and water-soluble organic carbon (WSOC), followed by 2-stroke high-power heavy-fuel-oil vessel (2-HHV), and four-stroke high-power marine-diesel vessel (4-HMV). While 2-HHV had obviously higher light absorption coefficients of methanol-soluble BrC (Abs365,M) and water-soluble BrC (Abs365,W) in unit weight of PM than the other two types of ships. The tested ships presented comparable or higher absorption efficiency of BrC in water extracts (MAE365,W) compared with other BrC emission sources. Majority of BrC was concentrated in fine particles, and the particle size distributions of both Abs365,M and Abs365,W showed bimodal patterns, peaking at 0.43-0.65 µm and 4.7-5.8 µm, respectively. However, different particle size distributions were found for MAE365,M between diesel and heavy fuel oil ships. Besides, different wavelength dependence in particles with different size were also detected. Ship exhaust could be confirmed as a non-ignorable BrC emission source, and complex influencing factor could affect the light absorption characteristics of ship emissions. Particle size should also be considered when light absorption ability of BrC was evaluated.
Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Navios , Carbono/análise , Metanol , Monitoramento Ambiental/métodos , Aerossóis/análise , Material Particulado/análise , Emissões de Veículos , Água , ChinaRESUMO
As a vital type of light-absorbing aerosol, brown carbon (BrC) presents inherent associations with atmospheric photochemistry and climate change. However, the understanding of the chemical and optical properties of BrC is limited, especially in some resource-dependent cities with long heating periods in northwest China. This study showed that the annual average abundances of Water-soluble BrC (WS-BrC) were 9.33±7.42 and 8.69±6.29 µg/m3 in Baotou and Wuhai and the concentrations, absorption coefficient (Abs365), and mass absorption efficiency (MAE365) of WS-BrC presented significant seasonal patterns, with high values in the heating season and low values in the non-heating season; while showing opposite seasonal trends for the Absorption Ångström exponent (AAE300-400). Comparatively, the levels of WS-BrC in developing regions (such as cities in Asia) were higher than those in developed regions (such as cities in Europe and Australia), indicating the significant differences in energy consumption in these regions. By combining fluorescence excitation-emission matrix (EEM) spectra with the parallel factor (PARAFAC) model, humic-like (C1 and C2) and protein-like (C3) substances were identified, and accounted for 61.40%±4.66% and 38.6%±3.78% at Baotou, and 60.33%±6.29% and 39.67%±4.17% at Wuhai, respectively. The results of source apportionment suggested that the potential source regions of WS-BrC varied in heating vs. non-heating seasons and that the properties of WS-BrC significantly depended on primary emissions (e.g., combustion emissions) and secondary formation.
Assuntos
Poluentes Atmosféricos , Carbono , Cidades , Carbono/análise , Água/química , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análiseRESUMO
The reaction of carbonyl-to-imine/hemiaminal conversion in the atmospheric aqueous phase is a critical pathway to produce the light-absorbing N-containing secondary organic compounds (SOC). The formation mechanism of these compounds has been wildly investigated in bulk solutions with a low ionic strength. However, the ionic strength in the aqueous phase of the polluted atmosphere may be higher. It is still unclear whether and to what extent the inorganic ions can affect the SOC formation. Here we prepared the bulk solution with certain ionic strength, in which glyoxal and ammonium were mixed to mimic the aqueous-phase reaction. Molecular characterization by High-resolution Mass Spectrometry was performed to identify the N-containing products, and the light absorption of the mixtures was measured by ultraviolet-visible spectroscopy. Thirty-nine N-containing compounds were identified and divided into four categories (N-heterocyclic chromophores, high-molecular-weight compounds with N-heterocycle, aliphatic imines/hemiaminals, and the unclassified). It was observed that the longer reaction time and higher ionic strength led to the formation of more N-heterocyclic chromophores and the increasing of the light-absorbance of the mixture. The added inorganic ions were proposed to make the aqueous phase somewhat viscous so that the molecules were prone to undergo consecutive and intramolecular reactions to form the heterocycles. In general, this study revealed that the enhanced ionic strength and prolonged reaction time had the promotion effect on the light-absorbing SOC formation. It implies that the aldehyde-derived aqueous-phase SOC would contribute more light-absorbing particulate matter in the industrial or populated area where inorganic ions are abundant.
Assuntos
Compostos Orgânicos , Material Particulado , Material Particulado/análise , Compostos Orgânicos/análise , Espectrometria de Massas/métodos , Iminas/análise , Íons , Concentração Osmolar , Aerossóis/análiseRESUMO
Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.
Assuntos
Atmosfera , Carbono , Viscosidade , Biomassa , Atmosfera/química , AerossóisRESUMO
Brown carbon (BrC) is one of the most mysterious aerosol components responsible for global warming and air pollution. Iron (Fe)-induced catalytic oxidation of ubiquitous phenolic compounds has been considered as a potential pathway for BrC formation in the dark. However, the reaction mechanism and product composition are still poorly understood. Herein, 13 phenolic precursors were employed to react with Fe under environmentally relevant conditions. Using Fourier transform ion cyclotron resonance mass spectrometry, a total of 764 unique molecular formulas were identified, and over 85% of them can be found in atmospheric aerosols. In particular, products derived from precursors with catechol-, guaiacol-, and syringol-like-based structures can be distinguished by their optical and molecular characteristics, indicating the structure-dependent formation of BrC from phenolic precursors. Multiple pieces of evidence indicate that under acidic conditions, the contribution of either autoxidation or oxygen-induced free radical oxidation to BrC formation is extremely limited. Ligand-to-Fe charge transfer and subsequent phenoxy radical coupling reactions were the main mechanism for the formation of polymerization products with high molecular diversity, and the efficiency of BrC generation was linearly correlated with the ionization potential of phenolic precursors. The present study uncovered how chemically diverse BrC products were formed by the Fe-phenolic compound reactions at the molecular level and also provide a new paradigm for the study of the atmospheric aerosol formation mechanism.
Assuntos
Poluentes Atmosféricos , Compostos de Ferro , Carbono , Aerossóis/análise , Compostos de Ferro/análise , Ferro , Guaiacol/análise , Poluentes Atmosféricos/análiseRESUMO
Optical characteristics and molecular compositions of brown carbon (BrC) were investigated during winter 2019 at a rural site of China with a focus on nitro-aromatic compounds (NACs) and imidazoles (IMs). The abundance of gaseous nitrophenols relative to CO during the campaign maximized at noontime, being similar to O3, while the particulate NACs during the haze periods strongly correlated with toluene and NO2, suggesting that NACs in the region are largely formed from the gas-phase photooxidation. Strong correlations of particulate IMs in the dry haze periods with the mass ratio of EC/PM2.5 and the concentration of levoglucosan were observed, indicating that IMs during the dry events are largely derived from biomass burning emissions. However, an increase in IMs with the increasing aerosol liquid water content and pH was observed in the humid haze events, along with much lower abundances of levoglucosan and K+ relative to PM2.5, suggesting that IMs were mostly formed from aqueous reactions in the humid haze periods. These IMs exponentially increased with an increasing NH3 owing to an aqueous reaction of carbonyls with free ammonia. Our findings for the first time revealed an enhancing effect of ammonia on BrC formation in China, especially in humid haze periods.
Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Amônia , Carbono , China , Poeira , Estações do Ano , Carvão Mineral , Gases , Aerossóis/análise , Monitoramento AmbientalRESUMO
Tar balls are brown carbonaceous particles that are highly viscous, spherical, amorphous, and light absorbing. They are believed to form in biomass burning smoke plumes during transport in the troposphere. Tar balls are also believed to have a significant impact on the Earth's radiative balance, but due to poorly characterized optical properties, this impact is highly uncertain. Here, we used two nighttime samples to investigate the chemical composition and optical properties of individual tar balls transported in the free troposphere to the Climate Observatory "Ottavio Vittori" on Mt. Cimone, Italy, using multimodal microspectroscopy. In our two samples, tar balls contributed 50% of carbonaceous particles by number. Of those tar balls, 16% were inhomogeneously mixed with other constituents. Using electron energy loss spectroscopy, we retrieved the complex refractive index (RI) for a wavelength range from 200 to 1200 nm for both inhomogeneously and homogeneously mixed tar balls. We found no significant difference in the average RI of inhomogeneously and homogeneously mixed tar balls (1.40-0.03i and 1.36-0.03i at 550 nm, respectively). Furthermore, we estimated the top of the atmosphere radiative forcing using the Santa Barbara DISORT Atmospheric Radiative Transfer model and found that a layer of only tar balls with an optical depth of 0.1 above vegetation would exert a positive radiative forcing ranging from 2.8 W m-2 (on a clear sky day) to 9.5 W m-2 (when clouds are below the aerosol layer). Understanding the optical properties of tar balls can help reduce uncertainties associated with the contribution of biomass-burning aerosol in current climate models.