Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 72(6): 1443-1453, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37586404

RESUMO

The acknowledgment of evolutionary dependence among species has fundamentally changed how we ask biological questions. Phylogenetic models became the standard approach for studies with 3 or more lineages, in particular those using extant species. Most phylogenetic comparative methods (PCMs) translate relatedness into covariance, meaning that evolutionary changes before lineages split should be interpreted together whereas after the split lineages are expected to change independently. This clever realization has shaped decades of research. Here, we discuss one element of the comparative method often ignored or assumed as unimportant: if nodes of a phylogeny represent the dissolution of the ancestral lineage into two new ones or if the ancestral lineage can survive speciation events (i.e., budding). Budding speciation is often reported in paleontological studies, due to the nature of the evidence for budding in the fossil record, but it is surprisingly absent in comparative methods. Here, we show that many PCMs assume that divergence happens as a symmetric split, even if these methods do not explicitly mention this assumption. We discuss the properties of trait evolution models for continuous and discrete traits and their adequacy under a scenario of budding speciation. We discuss the effects of budding speciation under a series of plausible evolutionary scenarios and show when and how these can influence our estimates. We also propose that long-lived lineages that have survived through a series of budding speciation events and given birth to multiple new lineages can produce evolutionary patterns that challenge our intuition about the most parsimonious history of trait changes in a clade. We hope our discussion can help bridge comparative approaches in paleontology and neontology as well as foster awareness about the assumptions we make when we use phylogenetic trees.


Assuntos
Fósseis , Especiação Genética , Filogenia , Fenótipo , Evolução Biológica
2.
Mol Ecol ; 31(11): 3192-3209, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390211

RESUMO

Traditional classification of speciation modes has focused on physical barriers to gene flow. Allopatric speciation with complete reproductive isolation is viewed as the most common mechanism of speciation. Parapatry and sympatry, by contrast, entail speciation in the face of ongoing gene flow, making them more difficult to detect. The genus Iberodes (Boraginaceae, NW Europe) comprises five species with contrasting morphological traits, habitats and species distributions. Based on the predominance of narrow and geographically distant endemic species, we hypothesized that geographical barriers were responsible for most speciation events in Iberodes. We undertook an integrative study including: (i) phylogenomics through restriction-site-associated DNA sequencing (RAD-seq), (ii) genetic structure analyses, (iii) demographic modelling, (iv) morphometrics, and (v) climatic niche modelling and niche overlap analysis. The results revealed a history of recurrent progenitor-derivative speciation manifested by a paraphyletic pattern of nested species differentiation. Budding speciation mediated by ecological differentiation is suggested for the coastal lineage, deriving from the inland widespread Iberodes linifolia during the Late Pliocene. Meanwhile, geographical isolation followed by niche shifts are suggested for the more recent differentiation of the coastland taxa. Our work provides a model for distinguishing speciation via ecological differentiation of peripheral, narrowly endemic I. kuzinskyanae and I. littoralis from a widespread extant ancestor, I. linifolia. Ultimately, our results illustrate a case of Pliocene speciation in the probable absence of geographical barriers and get away from the traditional cladistic perspective of speciation as producing two species from an extinct ancestor, thus reminding us that phylogenetic trees tell only part of the story.


Assuntos
Boraginaceae , Especiação Genética , Fluxo Gênico , Filogenia , Simpatria
3.
Biol Lett ; 17(1): 20200754, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465331

RESUMO

Parametric phylogenetic approaches that attempt to delineate between distinct 'modes' of speciation (splitting cladogenesis, budding cladogenesis and anagenesis) between fossil taxa have become increasingly popular among comparative biologists. But it is not yet well understood how clearly morphological data from fossil taxa speak to detailed questions of speciation mode when compared with the lineage diversification models that serve as their basis. In addition, the congruence of inferences made using these approaches with geographical patterns has not been explored. Here, I extend a previously introduced maximum-likelihood approach for the examination of ancestor-descendant relationships to accommodate budding speciation and apply it to a dataset of fossil hominins. I place these results in a phylogeographic context to better understand spatial dynamics underlying the hypothesized speciation patterns. The spatial patterns implied by the phylogeny hint at the complex demographic processes underlying the spread and diversification of hominins throughout the Pleistocene. I also find that inferences of budding are driven primarily by stratigraphic, versus morphological, data and discuss the ramifications for interpretations of speciation process in hominins specifically and from phylogenetic data in general.


Assuntos
Hominidae , Animais , Especiação Genética , Hominidae/genética , Funções Verossimilhança , Filogenia , Filogeografia
4.
Front Plant Sci ; 14: 1268546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239226

RESUMO

Polyploidization is a process that typically leads to instantaneous reproductive isolation and has, therefore, been considered as one of the major evolutionary forces in the species-rich Hengduan Mountains (HM), yet this topic remains poorly studied in the region. Allium sikkimense and its relatives (about eight species) compose a natural diploid-polyploid complex with the highest diversity in the HM and adjacent areas. A combination of nuclear ribosomal DNA (nrDNA), plastome, transcriptome, and ploidy identification through chromosome counting and flow cytometry is employed to reconstruct the phylogenetic relationships in this complex and to investigate the frequency and the evolutionary significance of polyploidy in the complex. The plastome failed to resolve the phylogenetic relationships of the different species in the A. sikkimense complex, and the phylogenetic tree based on nrDNA also has limited resolution. However, our study reveals a well-resolved phylogenetic framework for species in the A. sikkimense complex using more than 1,000 orthologous genes from the transcriptome data. Previously recognized morphospecies A. sikkimense are non-monophyletic and comprise at least two independently evolved lineages (i.e., cryptic species), each forming a clade with different diploid species in this complex. The embedded pattern of octoploid A. jichouense and tetraploid A. sp. nov. within different polyploid samples of A. sikkimense supports a possible scenario of budding speciation (via niche divergence). Furthermore, our results reveal that co-occurring species in the A. sikkimense complex usually have different ploidy levels, suggesting that polyploidy is an important process for reproductive isolation of sympatric Allium species. Phylogenetic network analyses suggested that the phylogenetic relationships of the A. sikkimense complex, allowing for reticulation events, always fit the dataset better than a simple bifurcating tree. In addition, the included or exserted filaments, which have long been used to delimit species, are highly unreliable taxonomically due to their extensive parallel and convergent evolution.

5.
Evolution ; 76(6): 1246-1259, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403214

RESUMO

Budding speciation involves isolation of marginal populations at the periphery of a species range and is thought to be a prominent mode of speciation in organisms with low dispersal and/or strong local adaptation among populations. Budding speciation is typically evidenced by abutting, asymmetric ranges of ecologically divergent sister species and low genetic diversity in putative budded species. Yet these indirect patterns may be unreliable, instead caused by postspeciation processes such as range or demographic shifts. Nested phylogenetic relationships provide the most conclusive evidence of budding speciation. A putative case of budding speciation in the serpentine endemic Clarkia franciscana and two closely related widespread congeners was studied by Harlan Lewis, Peter Raven, Leslie Gottlieb, and others over a 20-year period, yet the origin of C. franciscana remains controversial. Here, we reinvestigate this system with phylogenomic analyses to determine whether C. franciscana is a recently derived budded species, phylogenetically nested within one of the other two putative progenitor species. In contrast to the hypothesized pattern of relatedness among the three Clarkia species, we find no evidence for recent budding speciation. Instead, the data suggest the three species diverged simultaneously. We urge caution in using contemporary range patterns to infer geographic modes of speciation.


Assuntos
Clarkia , Golfinhos , Animais , Clarkia/genética , Especiação Genética , Filogenia
6.
Front Plant Sci ; 13: 935975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958224

RESUMO

The path followed by species in the colonization of remote oceanic islands ultimately depends on their phylogenetic constraints and ecological responses. In this study, we aim to evaluate the relative role of geographical and ecological forces in the origin and evolution of the Madeiran ivy (Hedera maderensis), a single-species endemic belonging to the western polyploid clade of Hedera. To determine the phylogenetic placement of H. maderensis within the western polyploid clade, we analyzed 40 populations (92 individuals) using genotyping-by-sequencing and including Hedera helix as outgroup. Climatic niche differences among the study species were evaluated using a database with 867 records representing the entire species ranges. To test species responses to climate, 13 vegetative and reproductive functional traits were examined for 70 populations (335 individuals). Phylogenomic results revealed a nested pattern with H. maderensis embedded within the south-western Iberian H. iberica. Gradual niche differentiation from the coldest and most continental populations of H. iberica to the warm and stable coastal population sister to H. maderensis parallels the geographical pattern observed in the phylogeny. Similarity in functional traits is observed for H. maderensis and H. iberica. The two species show leaves with higher specific leaf area (SLA), lower leaf dry matter content (LDMC) and thickness and fruits with lower pulp fraction than the other western polyploid species H. hibernica. Acquisition of a Macaronesian climatic niche and the associated functional syndrome in mainland European ivies (leaves with high SLA, and low LDMC and thickness, and fruits with less pulp content) was a key step in the colonization of Madeira by the H. iberica/H. maderensis lineage, which points to climatic pre-adaptation as key in the success of island colonization (dispersal and establishment). Once in Madeira, budding speciation was driven by geographical isolation, while ecological processes are regarded as secondary forces with a putative impact in the lack of further in situ diversification.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa