Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Complement Altern Med ; 19(1): 163, 2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31277636

RESUMO

BACKGROUND: Therapeutic vaccines against cervical cancer remain ineffective. Previously, we demonstrated that blocking the signalling of a cytokine, interleukin 10, at the time of immunisation elicited significantly higher numbers of antigen specific T cells and inhibited tumour growth in mice. RESULTS: In the current paper, we demonstrate, in a HPV16 E6/E7 transformed TC-1 tumour mouse model, that despite increased antigen specific T cell numbers, blocking IL-10 signalling at the time of immunisation does not increase the survival time of the TC-1 tumour bearing mice compared to mice receiving the same immunisation with no IL-10 signalling blockade. Moreover, the function of tumour infiltrating T cells isolated 3 weeks post TC-1 transplantation is more suppressed than those isolated 2 weeks after tumour inoculation. We demonstrate that synthesized caerin peptides, derived from amphibian skin secretions, 1) were able to inhibit TC-1 tumour growth both in vitro and in vivo; 2) are environmentally stable; and 3) promote the secretion of pro-inflammatory interlukine-6 by TC-1 cells. Notably caerin peptides were able to increase the survival time of TC-1 tumour bearing mice after therapeutic vaccination with a HPV16E7 peptide-based vaccine containing IL-10 inhibitor, via recruiting increased levels of T cells to the tumour site. CONCLUSION: Caerin peptides increase the efficacy of a therapeutic vaccine by recruiting more T cells to the tumour site.


Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Vacinas Anticâncer/uso terapêutico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Proteínas de Anfíbios/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Vacinas Anticâncer/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Interleucina-10/antagonistas & inibidores , Interleucina-6/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Linfócitos T/metabolismo
2.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497272

RESUMO

Macrophages are one of the essential components of the tumour microenvironment (TME) of many cancers and show complex heterogeneity and functions. More recent research has been focusing on the characterisation of tumour-associated macrophages (TAMs). Previously, our study demonstrated that caerin 1.1/1.9 peptides significantly improve the therapeutic efficacy of combined specific immunotherapy and immune checkpoint blockade in a murine transplantable tumour model (TC-1). In this study, the mice inoculated with TC-1 tumour were immunised differently. The TAMs were isolated using flow cytometry and characterised by cytokine ELISA. The survival rates of mice with different treatments containing caerin 1.1/19 were assessed comparatively, including those with/without macrophage depletion. The single-cell RNA sequencing (scRNA-seq) data of previous studies were integrated to further reveal the functions of TAMs with the treatments containing caerin 1.1/1.9. As a comparison, the TAMs of stage I and II cervical cancer patients were analysed using scRNA-seq analysis. We demonstrate that caerin induced tumour clearance is associated with infiltration of tumours by IL-12 secreting Ly6C+F4/80+ macrophages exhibiting enhanced IFN-α response signalling, renders animals resistant to further tumour challenge, which is lost after macrophage depletion. Our results indicate that caerin 1.1/1.9 treatment has great potential in improving current immunotherapy efficacy.

3.
Front Oncol ; 12: 861206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046040

RESUMO

Objective: To investigate the effect of the 131I-labeled high-affinity peptides Caerin 1.1 and Caerin 1.9 for the treatment of A549 human NSCLC cells. Methods: ① 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and plate clone formation assays were performed to confirm the in vitro anti-tumor activity of Caerin 1.1 and Caerin 1.9. ② Chloramine-T was used to label Caerin 1.1 and Caerin 1.9 with 131I, and the Cell Counting Kit 8 assay was performed to analyze the inhibitory effect of unlabeled Caerin 1.1, unlabeled Caerin 1.9, 131I-labeled Caerin 1.1, and 131I-labeled Caerin 1.9 on the proliferation of NSCLC cells. An A549 NSCLC nude mouse model was established to investigate the in vivo anti-tumor activity of unlabeled Caerin 1.1, unlabeled Caerin 1.9, 131I-labeled Caerin 1.1, and 131I-labeled Caerin 1.9. Results: ① Caerin 1.1 and Caerin 1.9 inhibited the proliferation of NSCLC cells in vitro in a concentration-dependent manner. The half-maximal inhibitory concentration was 16.26 µg/ml and 17.46 µg/ml, respectively, with no significant intergroup difference (P>0.05). ② 131I-labeled Caerin 1.1 and 131I-labeled Caerin 1.9 were equally effective and were superior to their unlabeled versions in their ability to inhibit the proliferation and growth of NSCLC cells (P>0.05). Conclusions: 131I-labeled Caerin 1.1 and 131I-labeled Caerin 1.9 inhibit the proliferation and growth of NSCLC cells and may become potential treatments for NSCLC.

4.
Front Oncol ; 11: 754770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858827

RESUMO

The development of topical cream drugs that increase the immune activation of tumour-infiltrating lymphocytes against tumour and chronic viral infection-associated lesions is of great immunotherapeutic significance. This study demonstrates that the topical application of a temperature-sensitive gel containing caerin 1.1 and 1.9 peptides reduces nearly 50% of the tumour weight of HPV16 E6/E7-transformed TC-1 tumour-bearing mice via improving the tumour microenvironment. Confocal microscopy confirms the time-dependent penetration of caerin 1.9 through the epidermal layer of the ear skin structure of mice. Single-cell transcriptomic analysis shows that the caerin 1.1/1.9 gel expands the populations with high immune activation level and largely stimulates the pro-inflammatory activity of NK and dendritic cells. Closely associated with INFα response, Cebpb seems to play a key role in altering the function of all Arg1hi macrophages in the caerin group. In addition, the caerin gel treatment recruits almost two-fold more activated CD8+ T cells to the TME, relative to the untreated tumour, which shows a synergistic effect derived from the regulation of S1pr1, Ccr7, Ms4a4b and Gimap family expression. The TMT10plex-labelling proteomic quantification further demonstrates the activation of interferon-alpha/beta secretion and response to cytokine stimulus by the caerin gel, while the protein contents of several key regulators were elevated by more than 30%, such as Cd5l, Gzma, Ifit1, Irf9 and Stat1. Computational integration of the proteome with the single-cell transcriptome consistently suggested greater activation of NK and T cells with the topical application of caerin peptide gel.

5.
Mater Sci Eng C Mater Biol Appl ; 121: 111819, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579462

RESUMO

Magnesium (Mg) has mechanical properties similar to human bones and Mg alloy is considered ideal medical implant material. However, the high velocity of degradation inside the human inner environment severely hampers the usage of Mg alloys. In this study, caerin peptide 1.9 (F3) and a modified sequence of caerin 1.1 (F1) with anti-bacterial activity, were covalently immobilised on the surface of Mg alloys by plasma chemical click reaction. The in vitro antibacterial activity and corrosion resistance of these caerin peptide-immobilised Mg alloys were investigated in Dulbecco's Modified Eagle Medium (DMEM) solution. Un-immobilised Mg alloy sample, blank drug-sensitive tablet (BASD) and a commonly used antibiotics Tazocin were used for comparison. Results showed that peptide immobilised Mg samples showed observable improved corrosion resistance and prolonged antibacterial effect compared to non-immobilised Mg alloy and free caerin peptides. These results indicate that coating Mg alloy with caerin peptides obviously increases the alloy's antibacterial ability and putatively improves the corrosion resistance in vitro. The mechanism underlying the prolonged antibacterial effect for annealed Mg alloys immobilised with the peptides (especially F3) remains unclear, which worth further experimental and theoretical investigation.


Assuntos
Ligas , Preparações Farmacêuticas , Ligas/farmacologia , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis , Corrosão , Humanos , Magnésio , Peptídeos/farmacologia , Propriedades de Superfície
6.
Clin Transl Immunology ; 10(8): e1335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429969

RESUMO

OBJECTIVES: Developing a vaccine formula that alters the tumor-infiltrating lymphocytes to be more immune active against a tumor is key to the improvement of clinical responses to immunotherapy. Here, we demonstrate that, in conjunction with E7 antigen-specific immunotherapy, and IL-10 and PD-1 blockade, intratumoral administration of caerin 1.1/1.9 peptides improves TC-1 tumor microenvironment (TME) to be more immune active than injection of a control peptide. METHODS: We compared the survival time of vaccinated TC-1 tumor-bearing mice with PD-1 and IL-10 blockade, in combination with a further injection of caerin 1.1/1.9 or control peptides. The tumor-infiltrating haematopoietic cells were examined by flow cytometry. Single-cell transcriptomics and proteomics were used to quantify changes in cellular activity across different cell types within the TME. RESULTS: The injection of caerin 1.1/1.9 increased the efficacy of vaccinated TC-1 tumor-bearing mice with anti-PD-1 treatment and largely expanded the populations of macrophages and NK cells with higher immune activation level, while reducing immunosuppressive macrophages. More activated CD8+ T cells were induced with higher populations of memory and effector-memory CD8+ T subsets. Computational integration of the proteome with the single-cell transcriptome supported activation of Stat1-modulated apoptosis and significant reduction in immune-suppressive B-cell function following caerin 1.1 and 1.9 treatment. CONCLUSIONS: Caerin 1.1/1.9-containing treatment results in improved antitumor responses. Harnessing the novel candidate genes preferentially enriched in the immune active cell populations may allow further exploration of distinct macrophages, T cells and their functions in TC-1 tumors.

7.
Antibiotics (Basel) ; 9(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008028

RESUMO

Although acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is a manageable disease for many, it is still a source of significant morbidity and economic hardship for many others. The predominant mode of transmission of HIV/AIDS is sexual intercourse, and measures to reduce transmission are needed. Previously, we showed that caerin 1 antimicrobial peptides (AMPs) originally derived from Australian amphibians inhibited in vitro transmission of HIV at relatively low concentrations and had low toxicity for T cells and an endocervical cell line. The use of AMPs as part of microbicidal formulations would expose the vaginal microbiome to these agents and cause potential harm to protective lactobacilli. Here, we tested the effects of caerin 1 peptides and their analogs on the viability of two species of common vaginal lactobacilli (Lactobacillus rhamnosus and Lactobacillus crispatus). Several candidate peptides had limited toxicity for the lactobacilli at a range of concentrations that would inhibit HIV. Three AMPs were also tested for their ability to inhibit growth of Neisseria lactamica, a close relative of the sexually transmissible Neisseria gonorrhoeae. Neisseria lactamica was significantly more sensitive to the AMPs than the lactobacilli. Thus, several candidate AMPs have the capacity to inhibit HIV and possible N. gonorrhoeae transmission at concentrations that are significantly less harmful to the resident lactobacilli.

8.
Front Cell Dev Biol ; 8: 676, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850805

RESUMO

Host defense caerin 1.1 and 1.9 peptides, isolated from the glandular secretion of Australian tree frogs, the genus Litoria, have been previously shown to have multiple biological activities, including the inhibition of human papillomavirus (HPV) 16 early protein E7 transformed murine as well as human cancerous cell proliferation both in vitro and in vivo. However, the mechanism underlying their anti-proliferative activities against HPV18+ cervical cancer HeLa cells remains unknown. This study comparatively investigated the anti-proliferation on HeLa cells by caerin 1.1, 1.9, and their mixture, followed by confocal microscopy examination to assess the cellular intake of the peptides. Tandem mass tag labeling proteomics was employed to reveal the proteins that were significantly regulated by the peptide treatment in cells and cell growth environment, to elucidate the signaling pathways that were modulated. Western blot was performed to confirm the modulation of the pathways. Both caerin 1.1 and 1.9 highly inhibited HeLa cell proliferation with a significant additive effect compared to untreated and control peptide. They entered the cells with different magnitudes. Intensive protein-protein interaction was detected among significantly upregulated proteins. Translation, folding and localization of proteins and RNA processing, apoptosis process was significantly enriched post the treatments. The apoptotic signaling was suggested as a result of tumor necrosis factor-α (TNF-α) pathway activation, indicated by the dose-dependent elevated levels of caspase 3 and caspase 9. The epidermal growth factor receptor and androgen receptor pathways appeared inhibited by the peptides. Moreover, the activation of T-cell receptor derived from the quantitation results further implies the likelihood of recruiting more T cells to the cell growth environment post the treatment and more sensitive to T cell mediated killing of HeLa cells. Our results indicate that caerin 1.1 and 1.9 mediate apoptotic signals of HeLa cells and may subsequently enhances adaptive T cell immune responses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa