Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(24): e2122269119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35679341

RESUMO

A common feature of biological self-organization is how active agents communicate with each other or their environment via chemical signaling. Such communications, mediated by self-generated chemical gradients, have consequences for both individual motility strategies and collective migration patterns. Here, in a purely physicochemical system, we use self-propelling droplets as a model for chemically active particles that modify their environment by leaving chemical footprints, which act as chemorepulsive signals to other droplets. We analyze this communication mechanism quantitatively both on the scale of individual agent-trail collisions as well as on the collective scale where droplets actively remodel their environment while adapting their dynamics to that evolving chemical landscape. We show in experiment and simulation how these interactions cause a transient dynamical arrest in active emulsions where swimmers are caged between each other's trails of secreted chemicals. Our findings provide insight into the collective dynamics of chemically active particles and yield principles for predicting how negative autochemotaxis shapes their navigation strategy.


Assuntos
Quimiotaxia , Simulação por Computador , Emulsões
2.
Chembiochem ; : e202400516, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141545

RESUMO

The ability to precisely control the function of nucleic acids plays an important role in biosensing and biomedicine. In recent years, novel strategies employing biological, physical, and chemical triggers have been developed to modulate the function of nucleic acids spatiotemporally. These approaches commonly involve the incorporation of stimuli-responsive groups onto nucleic acids to block their functions until triggers-induced decaging restore activity. These inventive strategies deepen our comprehension of nucleic acid molecules' dynamic behavior and provide new techniques for precise disease diagnosis and treatment. Focusing on the spatiotemporal regulation of nucleic acid molecules through the chemical caging-decaging strategy, we here present an overview of the innovative triggered control mechanisms and accentuate their implications across the fields of chemical biology, biomedicine, and biosensing.

3.
Chemistry ; 30(51): e202401289, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38959014

RESUMO

Triphenylamine-sensitized 8-dimethylaminoquinoline (TAQ) probes showed fair two-photon absorption and fragmentation cross sections in releasing kainate and GABA ligands. The water-soluble PEG and TEG-analogs allowed cell internalization and efficient light-gated liberation of the rhodamine reporter under UV and two-photon (NIR) irradiation conditions.


Assuntos
Fótons , Humanos , Corantes Fluorescentes/química , Rodaminas/química , Ácido gama-Aminobutírico/química , Polietilenoglicóis/química , Células HeLa , Compostos de Anilina/química , Quinolinas/química , Ligantes
4.
Chemistry ; 30(23): e202400579, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38350020

RESUMO

Efficient tools for controlling molecular functions with exquisite spatiotemporal resolution are much in demand to investigate biological processes in living systems. Here we report an easily synthesized caged dexamethasone for photo-activating cytoplasmic proteins fused to the glucocorticoid receptor. In the dark, it is stable in vitro as well as in vivo in both zebrafish (Danio rerio) and Xenopus sp, two significant models of vertebrates. In contrast, it liberates dexamethasone upon UV illumination, which has been harnessed to interfere with developmental steps in embryos of these animals. Interestingly, this new system is biologically orthogonal to the one for photo-activating proteins fused to the estrogen ERT receptor, which brings great prospect for activating two distinct proteins down to the single cell level.

5.
J Environ Manage ; 358: 120784, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603847

RESUMO

Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.


Assuntos
Biomarcadores , Monitoramento Ambiental , Espécies Sentinelas , Monitoramento Ambiental/métodos , Biomarcadores/análise , França , Animais , Peixes
6.
Angew Chem Int Ed Engl ; 63(30): e202404587, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717316

RESUMO

Photodynamic therapy is an anti-cancer treatment that requires illumination of photosensitizers to induce local cell death. Current near-infrared organic photosensitizers are built from large and non-modular structures that cannot be tuned to improve safety and minimize off-target toxicity. This work describes a novel chemical platform to generate enzyme-activatable near-infrared photosensitizers. We optimized the Se-bridged hemicyanine scaffold to include caging groups and biocompatible moieties, and generated cathepsin-triggered photosensitizers for effective ablation of human glioblastoma cells. Furthermore, we demonstrated that enzyme-activatable Se-bridged hemicyanines are effective photosensitizers for the safe ablation of microtumors in vivo, creating new avenues in the chemical design of targeted anti-cancer photodynamic therapy agents.


Assuntos
Raios Infravermelhos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Animais , Carbocianinas/química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos
7.
Chemistry ; 29(8): e202203289, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36395348

RESUMO

Controlling the pairing strength of nucleobases in DNA through reactions with compounds found inside the cell is a formidable challenge. Here we report how a thiazolyl substituent turns a strongly pairing ethynylpyridone C-nucleoside into a reactive residue in oligonucleotides. The thiazolyl-bearing pyridone reacts with soft nucleophiles, such as glutathione, but not with hard nucleophiles like hydroxide or carbonate. The addition products pair much more weakly with adenine in a complementary strand than the starting material, and also change their fluorescence. This makes oligonucleotides containing the new deoxynucleoside interesting for controlled release. Due to its reactivity toward N, P, S, and Se-nucleophiles, and the visual signal accompanying chemical conversion, the fluorescent nucleotide reported here may also have applications in chemical biology, sensing and diagnostics.


Assuntos
Nucleosídeos , Nucleotídeos , Pareamento de Bases , Timidina/química , Nucleosídeos/química , Nucleotídeos/química , Oligonucleotídeos/química , Corantes
8.
J Environ Manage ; 341: 118049, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182402

RESUMO

The Integrated Biomarker Response (IBR) is one of the most used index in biomonitoring, especially the IBRv2 integrating a reference condition. However, some limitations remain for its routine and large-scale use. The IBRv2 is proportional to the total number of biomarkers, is dependent on the nature of biomarkers and considers all biomarkers modulations, even small and biologically non-significant. In addition, IBRv2 relies on reference values but the references are often different between each study, making it difficult to compare results between studies and/or campaigns. To overcome these limitations, the present work proposed a new index called IBR-T ("Integrated Biomarker Response - Threshold") which considers the threshold values of biomarkers by limiting the calculation of the IBR value to biomarkers with significant modulations. The IBRv2 and the IBR-T were calculated and compared on four datasets from active biomonitoring campaigns using Dreissena polymorpha, a bivalve widely used in freshwater biomonitoring studies. The comparison between indices has demonstrated that the IBR-T presents a better correlation (0.907 < r2 < 0.998) with the percentage of biomarkers significantly modulated than the IBRv2 (0.002 < r2 < 0.759). The IBRv2 could not be equal to 0 (0.915 < intercept <1.694) because the value was dependent on the total number of biomarkers, whereas the IBR-T reached 0 when no biomarker was significantly modulated, which appears more biologically relevant. The final ranking of sites was different between the two index and the IBR-T ranking tends to be more ecologically relevant that the IBRv2 ranking. This IBR-T have shown an undeniable interest for biomonitoring and could be used by environmental managers to simplify the interpretation of large datasets, directly interpret the contamination status of the site, use it to decision-making, and finally to easily communicate the results of biomonitoring studies to the general public.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Biomarcadores , Dreissena/fisiologia , Água Doce , Valores de Referência , Poluentes Químicos da Água/análise
9.
Angew Chem Int Ed Engl ; 62(22): e202215614, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36964973

RESUMO

Tools for on-demand protein activation enable impactful gain-of-function studies in biological settings. Thus far, however, proteins have been chemically caged at primarily Lys, Tyr, and Sec, typically through the genetic encoding of unnatural amino acids. Herein, we report that the preferential reactivity of diazo compounds with protonated acids can be used to expand this toolbox to solvent-accessible carboxyl groups with an elevated pKa value. As a model protein, we employed lysozyme (Lyz), which has an active-site Glu35 residue with a pKa value of 6.2. A diazo compound with a bioorthogonal self-immolative handle esterified Glu35 selectively, inactivating Lyz. The hydrolytic activity of the caged Lyz on bacterial cell walls was restored with two small-molecule triggers. The decaging was more efficient by small molecules than by esterases. This simple chemical strategy was also applied to a hemeprotein and an aspartyl protease, setting the stage for broad applicability.


Assuntos
Aminoácidos , Proteínas , Proteínas/química , Aminoácidos/química
10.
Ecotoxicol Environ Saf ; 208: 111407, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068981

RESUMO

The use of a multi-biomarker approach with three-spined sticklebacks (Gasterosteus aculeatus) through an active biomonitoring strategy appears to be a promising tool in water quality assessment. The present work proposes to assess the efficiency of these tools in the discrimination of some sites in a large scale on the Meuse basin in Europe. The study was part of an EU program which aims to assess water quality in the Meuse across the French-Belgian border. Sticklebacks were caged 21 days upstream and downstream from the wastewater treatment plants (WWTPs) of Namur (Belgium), Charleville-Mézières (France), Bouillon (Belgium) and Avesnes-sur-Helpe (France). First, the state of a variety of physiological functions was assessed using a battery of biomarkers that represented innate immunity (leucocyte mortality and distribution, phagocytosis activity, respiratory burst), antioxidant system (GPx, CAT, SOD and total GSH content), oxidative damages to the membrane lipids (TBARS), biotransformation enzymes (EROD, GST), synaptic transmission (AChE) and reproduction system (spiggin and vitellogenin concentration). The impacts of the effluents were first analysed for each biomarker using a mixed model ANOVA followed by post-hoc analyses. Secondly, the global river contamination was assessed using a principal component analysis (PCA) followed by a hierarchical agglomerative clustering (HAC). The results highlighted a small number of effects of WWTP effluents on the physiological parameters in caged sticklebacks. Despite a significant effect of the "localisation" factor (upstream/downstream) in the mixed ANOVA for several biomarkers, post-hoc analyses revealed few differences between upstream and downstream of the WWTPs. Only a significant decrease of innate immune responses was observed downstream from the WWTPs of Avesnes-sur-Helpe and Namur. Other biomarker responses were not impacted by WWTP effluents. However, the multivariate analyses (PCA and HAC) of the biomarker responses helped to clearly discriminate the different study sites from the reference but also amongst themselves. Thus, a reduction of general condition (condition index and HSI) was observed in all groups of caged sticklebacks, associated with a weaker AChE activity in comparison with the reference population. A strong oxidative stress was highlighted in fish caged in the Meuse river at Charleville-Mézières whereas sticklebacks caged in the Meuse river at Namur exhibited weaker innate immune responses than others. Conversely, sticklebacks caged in the Helpe-Majeure river at Avesnes-sur-Helpe exhibited higher immune responses. Furthermore, weak defence capacities were recorded in fish caged in the Semois river at Bouillon. This experiment was the first to propose an active biomonitoring approach using three-spined stickleback to assess such varied environments. Low mortality and encouraging results in site discrimination support the use of this tool to assess the quality of a large number of water bodies.


Assuntos
Smegmamorpha/fisiologia , Poluentes Químicos da Água/análise , Qualidade da Água , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Monitoramento Ambiental , Europa (Continente) , Proteínas de Peixes , França , Estresse Oxidativo , Rios , Smegmamorpha/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vitelogeninas/metabolismo
11.
Ecotoxicol Environ Saf ; 222: 112483, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237640

RESUMO

Municipal wastewater treatment plant (WWTP) effluents are significant sources of organic and inorganic pollutants to aquatic ecosystems. Several studies have shown that the health of aquatic organisms can be adversely impacted following exposure to these complex chemical mixtures. The objective of this study was to examine the effects of in situ exposure in the St. Lawrence River (QC, Canada) of juvenile yellow perch (Perca flavescens) to a major WWTP effluent. Perch were caged at a reference site in the St. Lawrence River and downstream of a WWTP effluent-influenced site for one, three, and six weeks. Fish kept in controlled laboratory setting were also examined at the beginning of the experiment to evaluate the potential effect of caging on fish. Liver metabolites and gill oxidative stress biomarkers as well as body condition of perch were investigated at four time points (zero, one, three, and six weeks). Nitrogen (δ15N) and carbon (δ13C) stable isotopes as well as tissue concentrations of halogenated flame retardants and trace metals were also analyzed. Results indicated that body condition of perch caged in the effluent increased after three and six weeks of exposure compared to that of reference fish. Perch caged at the WWTP effluent-influenced site also had higher muscle δ13C and slightly depleted muscle δ15N after three and six weeks of exposure, suggesting differences in sewage-derived nutrient assimilation between sites. Concentrations of Σ34 polybrominated diphenyl ether (PBDE) were 2-fold greater in perch exposed downstream of the WWTP compared to those caged at the reference site. Metal concentrations in kidney of perch after three weeks of exposure were significantly lower at the effluent-influenced site. Kidney concentrations of Cd, Cu, Se, As, Zn and Fe were, however, higher after six weeks of exposure, supporting that metal accumulation is time- and element-specific. The metabolomes of perch from the effluent-influenced and reference sites were similar, but were distinct from the laboratory control fish, suggesting a caging effect on fish. Seven liver metabolites (glucose, malate, fumarate, glutamate, creatinine, histamine, and oxypurinol) were significantly more abundant in perch from cages than in the laboratory control perch. The combination of metabolomics and physiological variables provides a powerful tool to improve our understanding of the mechanisms of action of complex environmental pollutant mixtures in wild fish.


Assuntos
Percas , Poluentes Químicos da Água , Animais , Ecossistema , Fígado/química , Rios , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Ecotoxicol Environ Saf ; 193: 110341, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092582

RESUMO

An in-situ experiment was performed to study metabolic responses of the freshwater mussel Diplodon chilensis to water contaminated by leachates from an open dump and cattle activity, in order to analyze both the effects of those contaminants on aquatic environments and the potential use of a native bivalve to evaluate the effects of anthropic influence and eutrophication. Bivalves from a reference site were cage-transplanted to a control site (site A) and to a temporal water pond (site B) over 30 and 60 periods. Water quality analyses revealed that the site B was affected by anthropogenic influence. Mussel's hemocytes from site B showed 50% lower reactive oxygen species production and 130% higher lysosomal membrane stability in the site B mussels. In addition, no oxidative stress was evident in gills, despite the elevated copper and iron concentrations recorded in the site B water samples (CuB = 0.3350 ± 0.0636 mg. L-1vs. CuA = 0.0045 ± 0.0007 mg. L-1; FeB = 3.8650 ± 0.4031 mg. L-1vs. FeA = 0.0365 ± 0.0049 mg. L-1). In contrast, the adductor muscle accumulated more Fe (~10-20-fold) than the gills and showed signs of oxidative stress, e.g. superoxide dismutase activity and TBARS levels were increased by 10% were 34%, respectively, in the site B compared with the site A after 60 days of exposure. Additionally, the adductor muscle showed signs of anaerobic metabolism activation. Cu is accumulated in gills from both sites' individuals, at 60 days, in concordance with the increase in the activity of the cu-containing enzyme cytochrome-c-oxidase. There was a reduction in the overall condition and digestive gland index in bivalves exposed at site B, associated with diminished levels of lipid and protein contents. Metal-pollution and eutrophication affects D. chilensis metabolism and is associated to tissue-specific exposure, anaerobic metabolism and general energetic condition depletion.


Assuntos
Bivalves/efeitos dos fármacos , Eutrofização , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/enzimologia , Bivalves/metabolismo , Bovinos , Cobre/metabolismo , Água Doce , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Metais Pesados/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Poluentes Químicos da Água/metabolismo , Qualidade da Água
13.
Angew Chem Int Ed Engl ; 59(29): 11758-11762, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32314530

RESUMO

In DNA points accumulation in nanoscale topography (DNA-PAINT), capable of single-molecule localization microscopy with sub-10-nm resolution, the high background stemming from the unbound fluorescent probes in solution limits the imaging speed and throughput. Herein, we reductively cage the fluorescent DNA probes conjugated with a cyanine dye to hydrocyanine, acting as a photoactivatable dark state. The additional dark state from caging lowered the fluorescent background while enabling optically selective activation by total internal reflection (TIR) illumination at 405 nm. These benefits from "reductive caging" helped to increase the localization density or the imaging speed while preserving the image quality. With the aid of high-density analysis, we could further increase the imaging speed of conventional DNA-PAINT by two orders of magnitude, making DNA-PAINT capable of high-throughput super-resolution imaging.

14.
Biol Chem ; 400(3): 417-427, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30403651

RESUMO

Head-to-tail cyclization of genetically encoded peptides and proteins can be achieved with the split intein circular ligation of peptides and proteins (SICLOPPS) method by inserting the desired polypeptide between the C- and N-terminal fragments of a split intein. To prevent the intramolecular protein splicing reaction from spontaneously occurring upon folding of the intein domain, we have previously rendered this process light-dependent in a photo-controllable variant of the M86 intein, using genetically encoded ortho-nitrobenzyltyrosine at a structurally important position. Here, we report improvements on this photo-intein with regard to expression yields and rate of cyclic peptide formation. The temporally defined photo-activation of the purified stable intein precursor enabled a kinetic analysis that identified the final resolution of the branched intermediate as the rate-determining individual reaction of the three steps catalyzed by the intein. With this knowledge, we prepared an R143H mutant with a block F histidine residue. This histidine is conserved in most inteins and helps catalyze the third step of succinimide formation. The engineered intein formed the cyclic peptide product up to 3-fold faster within the first 15 min after irradiation, underlining the potential of protein splicing pathway engineering. The broader utility of the intein was also shown by formation of the 14-mer sunflower trypsin inhibitor 1.


Assuntos
Peptídeos Cíclicos/biossíntese , Cromatografia Líquida , Inteínas , Espectrometria de Massas , Estrutura Molecular , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/genética , Processos Fotoquímicos , Processamento de Proteína/genética , Solubilidade
15.
Fish Physiol Biochem ; 45(4): 1261-1276, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31222662

RESUMO

Caging is an active biomonitoring strategy that employs a sentinel species, sometimes a species naturally absent from the studied site, in the surveillance of water bodies to verify whether biota may be at risk. The main advantage of caging is the possibility to standardize several biotic and abiotic parameters. However, little knowledge is available about the effects of confinement on physiology and metabolism of caged organisms. The aim of this study is to characterize confinement and food access restriction effects, induced via caging experiments using a multi-biomarker approach (biometric data, immunity, antioxidant, metabolic detoxication, and digestive enzymes). The study has been undertaken using the same experiment conducted in ecosystem conditions using three-spined stickleback (Gasterosteus aculeatus) during two different periods: one in April, corresponding to breeding season, and the other in October, outside breeding season. Fifteen fish were maintained for 21 days in different conditions (caged or uncaged and with or without food supply). The main result was that confinement stress had little impact on the biological markers of sticklebacks. However, the stressors seemed to increase the negative effects of food restriction on these biomarkers, when sticklebacks needed more energy, that is, during their breeding period. Outside breeding period, most investigated biomarkers were not impacted by caging. This study showed a way to specify the conditions of application and interpretation of biomarkers during active monitoring to ensure an effective, reliable diagnosis of water body quality.


Assuntos
Smegmamorpha/fisiologia , Estresse Fisiológico , Fenômenos Fisiológicos da Nutrição Animal , Animais , Controle Comportamental , Biomarcadores , Feminino , Fígado/metabolismo , Masculino , Reprodução
16.
Angew Chem Int Ed Engl ; 58(20): 6620-6624, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30773767

RESUMO

Controlling the functional dynamics of DNA within living cells is essential in biomedical research. Epigenetic modifications such as DNA methylation play a key role in this endeavour. DNA methylation can be controlled by genetic means. Yet there are few chemical tools available for the spatial and temporal modulation of this modification. Herein, we present a small-molecule approach to modulate DNA methylation with light. The strategy uses a photo-tuneable version of a clinically used drug (5-aza-2'-deoxycytidine) to alter the catalytic activity of DNA methyltransferases, the enzymes that methylate DNA. After uptake by cells, the photo-regulated molecule can be light-controlled to reduce genome-wide DNA methylation levels in proliferating cells. The chemical tool complements genetic, biochemical, and pharmacological approaches to study the role of DNA methylation in biology and medicine.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Humanos
17.
Chembiochem ; 19(12): 1239-1243, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29473264

RESUMO

Optical control over protein expression could provide a means to interrogate a range of biological processes. One approach has employed caged ligands of the estrogen receptor (ER) in combination with broadly used ligand-dependent Cre recombinase proteins. Existing approaches use UV or blue wavelengths, which hinders their application in tissue settings. Additionally, issues of payload diffusion can impede fine spatial control over the recombination process. Here, we detail the chemical optimization of a near-infrared (NIR) light-activated variant of the ER antagonist cyclofen. These studies resulted in modification of both the caging group and payload with lipophilic n-butyl esters. The appendage of esters to the cyanine cage improved cellular uptake and retention. The installation of a 4-piperidyl ester enabled high spatial resolution of the light-initiated Cre-mediated recombination event. These studies described chemical modifications with potential general utility for improving spatial control of intracellular caging strategies. Additionally, these efforts will enable future applications to use these molecules in complex physiological settings.


Assuntos
Carbocianinas/química , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Integrases/genética , Optogenética/métodos , Receptores de Estrogênio/antagonistas & inibidores , Recombinação Genética , Animais , Linhagem Celular , Esterificação , Raios Infravermelhos , Ligantes , Luz , Camundongos
18.
Angew Chem Int Ed Engl ; 57(12): 3059-3063, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29370460

RESUMO

We describe a selective and mild chemical approach for controlling RNA hybridization, folding, and enzyme interactions. Reaction of RNAs in aqueous buffer with an azide-substituted acylating agent (100-200 mm) yields several 2'-OH acylations per RNA strand in as little as 10 min. This poly-acylated ("cloaked") RNA is strongly blocked from hybridization with complementary nucleic acids, from cleavage by RNA-processing enzymes, and from folding into active aptamer structures. Importantly, treatment with a water-soluble phosphine triggers a Staudinger reduction of the azide groups, resulting in spontaneous loss of acyl groups ("uncloaking"). This fully restores RNA folding and biochemical activity.


Assuntos
Azidas/farmacologia , RNA/efeitos dos fármacos , Acilação/efeitos dos fármacos , Azidas/antagonistas & inibidores , Azidas/química , Estrutura Molecular , Fosfinas/química , Fosfinas/farmacologia , Dobramento de RNA/efeitos dos fármacos
20.
Ecotoxicology ; 25(6): 1234-59, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27272751

RESUMO

Human activities have led to increased levels of various pollutants including metals in aquatic ecosystems. Increase of metallic concentrations in aquatic environments represents a potential risk to exposed organisms, including fish. The aim of this study was to characterize the environmental risk to fish health linked to a polymetallic contamination from former uranium mines in France. This contamination is characterized by metals naturally present in the areas (manganese and iron), uranium, and metals (aluminum and barium) added to precipitate uranium and its decay products. Effects from mine releases in two contaminated ponds (Pontabrier for Haute-Vienne Department and Saint-Pierre for Cantal Department) were compared to those assessed at four other ponds outside the influence of mine tailings (two reference ponds/department). In this way, 360 adult three-spined sticklebacks (Gasterosteus aculeatus) were caged for 28 days in these six ponds before biomarker analyses (immune system, antioxidant system, biometry, histology, DNA integrity, etc.). Ponds receiving uranium mine tailings presented higher concentrations of uranium, manganese and aluminum, especially for the Haute-Vienne Department. This uranium contamination could explain the higher bioaccumulation of this metal in fish caged in Pontabrier and Saint-Pierre Ponds. In the same way, many fish biomarkers (antioxidant and immune systems, acetylcholinesterase activity and biometric parameters) were impacted by this environmental exposure to mine tailings. This study shows the interest of caging and the use of a multi-biomarker approach in the study of a complex metallic contamination.


Assuntos
Monitoramento Ambiental , Metais/toxicidade , Mineração , Smegmamorpha/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , França , Metais/análise , Urânio , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa