RESUMO
Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.
RESUMO
An increase in intracellular [Ca2+ ] in exocrine acinar cells resident in the salivary glands or pancreas is a fundamental event that drives fluid secretion and exocytosis of proteins. Stimulation with secretagogues initiates Ca2+ signals with precise spatiotemporal properties thought to be important for driving physiological output. Both in vitro, in acutely isolated acini, and in vivo, in animals expressing genetically encoded indicators, individual cells appear specialized to initiate Ca2+ signals upon stimulation. Furthermore, these signals appear to spread to neighbouring cells. These properties are present in the absence of a conventional pacemaker mechanism dependent on the cyclical activation of Ca2+ -dependent or Ca2+ -conducting plasma membrane ion channels. In this article, we propose a model for 'pacing' intracellular Ca2+ signals in acinar cells based on the enhanced sensitivity of a subpopulation of individual cells and the intercellular diffusion through gap junctions of inositol 1,4,5-trisphosphate and Ca2+ to neighbouring cells.
RESUMO
Zinc is essential for many physiological functions, with a major role in digestive system, skin health, and learning and memory. On the cellular level, zinc is involved in cell proliferation and cell death. A selective zinc sensing receptor, ZnR/GPR39 is a Gq-coupled receptor that acts via the inositol trisphosphate pathway to release intracellular Ca2+. The ZnR/GPR39 serves as a mediator between extracellular changes in Zn2+ concentration and cellular Ca2+ signalling. This signalling pathway regulates ion transporters activity and thereby controls the formation of transepithelial gradients or neuronal membrane potential, which play a fundamental role in the physiological function of these tissues. This review focuses on the role of Ca2+ signalling, and specifically ZnR/GPR39, with respect to the regulation of the Na+/H+ exchanger, NHE1, and of the K+/Cl- cotransporters, KCC1-3, and also describes the physiological implications of this regulation.
RESUMO
Huntington's disease (HD) is a monogenic disorder with autosomal dominant inheritance. In HD patients, neurons in the striatum and cortex degenerate, leading to motor, psychiatric and cognitive disorders. Dysregulated synaptic function and calcium handling are common in many neurodegenerative diseases, including HD. N-methyl-D-aspartate (NMDA) receptor function is enhanced in HD at extrasynaptic sites, altering the balance of calcium-dependent neuronal survival versus death signalling pathways. Endoplasmic reticulum (ER) calcium handling is also abnormal in HD. The ER, which is continuous with the nuclear envelope, is purportedly involved in nuclear calcium signalling; based on this, we hypothesised that nuclear calcium signalling is altered in HD. We explored this hypothesis with calcium imaging techniques, including simultaneous epifluorescent imaging of cytosolic and nuclear calcium using jRCaMP1b and GCaMP3 sensors, respectively, in striatal spiny projection neurons in cortical-striatal co-cultures from the YAC128 mouse model of HD. Our data show contributions from a variety of calcium channels to nuclear calcium signalling. NMDA receptors (NMDARs) play an essential role in initiating action potential-dependent calcium signalling to the nucleus, and ryanodine receptors (RyR) contribute to both cytosolic and nuclear calcium signals. Unlike previous reports in glutamatergic hippocampal and cortical neurons, we found that in GABAergic striatal neurons, L-type voltage-gated calcium channels (CaV) contribute to cytosolic, but not nuclear calcium signalling. Calcium imaging also suggests impairments in nuclear calcium signalling in HD striatal neurons, where spontaneous action potential-dependent calcium transients in the nucleus were smaller in YAC128 striatal neurons compared to those of wild-type (WT). Our results elucidate mechanisms involved in action potential-dependent nuclear calcium signalling in GABAergic striatal neurons, and have revealed a clear deficit in this signalling in HD.
Assuntos
Sinalização do Cálcio , Corpo Estriado , Doença de Huntington , Neurônios , Sinapses , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Animais , Sinalização do Cálcio/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios/metabolismo , Camundongos , Sinapses/metabolismo , Sinapses/patologia , Núcleo Celular/metabolismo , Camundongos Transgênicos , Cálcio/metabolismo , Técnicas de Cocultura , Masculino , Células Cultivadas , Receptores de N-Metil-D-Aspartato/metabolismo , FemininoRESUMO
Thermostable direct haemolysin (TDH) is the key virulence factor secreted by the human gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin. It evokes potent cytotoxicity, the mechanism of which still remains under-explored. Here, we have elucidated the mechanistic details of cell death response elicited by TDH. Employing Caco-2 intestinal epithelial cells and THP-1 monocytic cells, we show that TDH induces some of the hallmark features of apoptosis-like programmed cell death. TDH triggers caspase-3 and 7 activations in the THP-1 cells, while caspase-7 activation is observed in the Caco-2 cells. Interestingly, TDH appears to induce caspase-independent cell death. Higher XIAP level and lower Smac/Diablo level upon TDH intoxication provide plausible explanation for the functional inability of caspases in the THP-1 cells, in particular. Further exploration reveals that mitochondria play a central role in the TDH-induced cell death. TDH triggers mitochondrial damage, resulting in the release of AIF and endonuclease G, responsible for the execution of caspase-independent cell death. Among the other critical mediators of cell death, ROS is found to play an important role in the THP-1 cells, while PARP-1 appears to play a critical role in the Caco-2 cells. Altogether, our work provides critical new insights into the mechanism of cell death induction by TDH, showing a common central theme of non-classical programmed cell death. Our study also unravels the interplay of crucial molecules in the underlying signalling processes. Our findings add valuable insights into the role of TDH in the context of the host-pathogen interaction processes.
Assuntos
Vibrio parahaemolyticus , Humanos , Células CACO-2 , Apoptose , CaspasesRESUMO
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.
Assuntos
Calmodulina , Taquicardia Ventricular , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Células HEK293 , HumanosRESUMO
In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca2+ ([Ca2+]cyt) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown. To explore the evolution of systemic defence responses, we investigated electrical and calcium signalling in the nonvascular plant Marchantia polymorpha. We found that electrical signals and [Ca2+]cyt waves are generated in response to mechanical wounding and propagated to nondamaged distal tissues in M. polymorpha. Functional analysis of MpGLR, the only GLR encoded in the genome of M. polymorpha, indicates that its activity is necessary for the systemic transmission of wound-induced electrical signals and [Ca2+]cyt waves, similar to vascular plants. However, spread of these signals is neither coupled to systemic accumulation of oxylipins nor to a transcriptional defence response in the distal tissues of wounded M. polymorpha plants. Our results suggest that lack of vasculature prevents translocation of additional signalling factors that, together with electrical signals and [Ca2+]cyt waves, contribute to systemic activation of defences in tracheophytes.
Assuntos
Sinalização do Cálcio , Cálcio , Regulação da Expressão Gênica de Plantas , Marchantia , Oxilipinas , Marchantia/genética , Marchantia/fisiologia , Oxilipinas/metabolismo , Cálcio/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genéticaRESUMO
Chitin oligomers (COs) are among the most common and active fungal elicitors of plant responses. Short-chain COs from symbiotic arbuscular mycorrhizal fungi activate accommodation responses in the host root, while long-chain COs from pathogenic fungi are acknowledged to trigger defence responses. The modulation of intracellular calcium concentration - a common second messenger in a wide variety of plant signal transduction processes - plays a central role in both signalling pathways with distinct signature features. Nevertheless, mounting evidence suggests that plant immunity and symbiosis signalling partially overlap at multiple levels. Here, we elaborate on recent findings on this topic, highlighting the nonbinary nature of chitin-based fungal signals, their perception and their interpretation through Ca2+ -mediated intracellular signals. Based on this, we propose that plant perception of symbiotic and pathogenic fungi is less clear-cut than previously described and involves a more complex scenario in which partially overlapping and blurred signalling mechanisms act upstream of the unambiguous regulation of gene expression driving accommodation or defence responses.
Assuntos
Micorrizas , Simbiose , Simbiose/fisiologia , Cálcio/metabolismo , Raízes de Plantas/metabolismo , Micorrizas/fisiologia , Quitina/metabolismo , Plantas/metabolismo , Imunidade VegetalRESUMO
Jasmonic acid-isoleucine (JA-Ile) is a plant defence hormone whose cellular levels are elevated upon herbivory and regulate defence signalling. Despite their pivotal role, our understanding of the rapid cellular perception of bioactive JA-Ile is limited. This study identifies cell type-specific JA-Ile-induced Ca2+ signal and its role in self-amplification and plant elicitor peptide receptor (PEPR)-mediated signalling. Using the Ca2+ reporter, R-GECO1 in Arabidopsis, we have characterized a monophasic and sustained JA-Ile-dependent Ca2+ signature in leaf epidermal cells. The rapid Ca2+ signal is independent of positive feedback by the JA-Ile receptor, COI1 and the transporter, JAT1. Microarray analysis identified up-regulation of receptors, PEPR1 and PEPR2 upon JA-Ile treatment. The pepr1 pepr2 double mutant in R-GECO1 background exhibits impaired external JA-Ile induced Ca2+ cyt elevation and impacts the canonical JA-Ile responsive genes. JA responsive transcription factor, MYC2 binds to the G-Box motif of PEPR1 and PEPR2 promoter and activates their expression upon JA-Ile treatment and in myc2 mutant, this is reduced. External JA-Ile amplifies AtPep-PEPR pathway by increasing the AtPep precursor, PROPEP expression. Our work shows a previously unknown non-canonical PEPR-JA-Ile-Ca2+ -MYC2 signalling module through which plants sense JA-Ile rapidly to amplify both AtPep-PEPR and jasmonate signalling in undamaged cells.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Isoleucina/análogos & derivados , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isoleucina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Psychiatric disorders such as Bipolar disorder, Anxiety, Major depressive disorder, Schizophrenia, Attention-deficit/hyperactivity disorder, as well as neurological disorders such as Migraine, are linked by the evidence of altered calcium homeostasis. The disturbance of intra-cellular calcium homeostasis disrupts the activity of numerous ion channels including transient receptor potential (TRP) channels. TRP channel families comprise non-selective calcium-permeable channels that have been implicated in variety of physiological processes in the brain, as well as in the pathogenesis of psychiatric disorders. Through a comprehensive review of current research and experimentation, this investigation elucidates the role of TRP channels in psychiatric disorders. Furthermore, this review discusses about the exploration of epigenetics and TRP channels in psychiatric disorders.
Assuntos
Transtornos Mentais , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , AnimaisRESUMO
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ motif containing GTPase activating protein 1 is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQ motif containing GTPase activating protein 1 bind to each other and are highly colocalized in sensory dorsal root ganglia neurons in mice. The expression of IQ motif containing GTPase activating protein 1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of dorsal root ganglia neurons catalysed by the small GTPase Cdc42 associated with IQ motif containing GTPase activating protein 1, leading to functional sensitization of the channel. Activation of protein kinase A is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQ motif containing GTPase activating protein 1. Concordantly, deletion of IQ motif containing GTPase activating protein 1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQ motif containing GTPase activating protein 1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Assuntos
Dor Crônica , Neuralgia , Camundongos , Animais , Canal de Cátion TRPA1/genética , Canais de Cátion TRPC/metabolismo , Células Receptoras Sensoriais/metabolismo , Neuralgia/metabolismo , Gânglios Espinais/metabolismoRESUMO
BACKGROUND: Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS: The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS: We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.
Assuntos
Antioxidantes , Malus , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cálcio/metabolismo , Verduras , Proteômica , Malus/metabolismo , Transdução de SinaisRESUMO
Plants require the major macronutrients, nitrogen (N), phosphorus (P) and potassium (K) for normal growth and development. Their deficiency in soil directly affects vital cellular processes, particularly root growth and architecture. Their perception, uptake and assimilation are regulated by complex signalling pathways. To overcome nutrient deficiencies, plants have developed certain response mechanisms that determine developmental and physiological adaptations. The signal transduction pathways underlying these responses involve a complex interplay of components such as nutrient transporters, transcription factors and others. In addition to their involvement in cross-talk with intracellular calcium signalling pathways, these components are also engaged in NPK sensing and homeostasis. The NPK sensing and homeostatic mechanisms hold the key to identify and understand the crucial players in nutrient regulatory networks in plants under both abiotic and biotic stresses. In this review, we discuss calcium signalling components/pathways underlying plant responses to NPK sensing, with a focus on the sensors, transporters and transcription factors involved in their respective signalling and homeostasis.
Assuntos
Cálcio , Plantas , Cálcio/metabolismo , Plantas/metabolismo , Solo , Homeostase , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Egg activation at fertilization in mouse eggs is caused by a series of cytosolic Ca2+ oscillations that are associated with an increase in ATP concentrations driven by increased mitochondrial activity. We have investigated the role of Ca2+ oscillations in these changes in ATP at fertilization by measuring the dynamics of ATP and Ca2+ in mouse eggs. An initial ATP increase started with the first Ca2+ transient at fertilization and then a secondary increase in ATP occurred â¼1â h later and this preceded a small and temporary increase in the frequency of Ca2+ oscillations. Other stimuli that caused Ca2+ oscillations such as PLCz1 or thimerosal, caused smaller or slower changes in ATP that failed to show the distinct secondary rise. Sperm-induced Ca2+ oscillations in the egg also triggered changes in the fluorescence of NADH which followed the pattern of Ca2+ spikes in a similar pattern to oscillations triggered by PLCz1 or thimerosal. When eggs were loaded with low concentrations of the Ca2+ chelator BAPTA, sperm triggered one small Ca2+ increase, but there were still extra phases of ATP increase that were similar to control fertilized eggs. Singular Ca2+ increases caused by thapsigargin were much less effective in elevating ATP levels. Together these data suggest that the secondary ATP increase at fertilization in mouse eggs is not caused by increases in cytosolic Ca2+. The fertilizing sperm may stimulate ATP production in eggs via both Ca2+ and by another mechanism that is independent of PLCz1 or Ca2+ oscillations.
Assuntos
Cálcio , Timerosal , Camundongos , Masculino , Animais , Timerosal/farmacologia , Sêmen , Espermatozoides/fisiologia , Trifosfato de Adenosina , Fertilização/fisiologiaRESUMO
TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.
Assuntos
Anoctamina-1/metabolismo , Antracenos/farmacologia , Cálcio/farmacologia , Cloretos/farmacologia , Animais , Anoctamina-1/genética , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Simulação de Dinâmica Molecular , Farmacologia em Rede , Técnicas de Patch-Clamp , Mutação PuntualRESUMO
The stimulation of growth and development of crops using ionising radiation (radiation hormesis) has been reported by many research groups. However, specific genes contributing to the radiation stimulation of plant growth are largely unknown. In this work, we studied the impact of the low-dose γ-irradiation of barley seeds on the growth dynamics and gene expression of eight barley cultivars in a greenhouse experiment. Our findings confirmed that candidate genes of the radiation growth stimulation, previously established in barley seedlings (PM19L-like, CML31-like, and AOS2-like), are significant in radiation hormesis throughout ontogeny. In γ-stimulated cultivars, the expression of these genes was aligned with the growth dynamics, yield parameters, and physiological conditions of plants. We identified contrasting cultivars for future gene editing and found that the γ-stimulated cultivar possessed some specific abiotic stress-responsive elements in the promotors of candidate genes, possibly revealing a new level of radiation hormesis effect execution. These results can be used in creating new productive barley cultivars, ecological toxicology of radionuclides, and eustress biology studies.
Assuntos
Hordeum , Hordeum/genética , Hormese , Produtos Agrícolas , Ecotoxicologia , Raios gamaRESUMO
AIMS/HYPOTHESIS: Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS: We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (ßS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS: ßS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in ßS2KO islets. Islets isolated from ßS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of ßS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in ßS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION: Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY: RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).
Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Humanos , Animais , Proinsulina/genética , Proinsulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismoRESUMO
Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.
Assuntos
Cálcio , Perda Auditiva , Humanos , Camundongos , Animais , Idoso , Lactente , Cálcio/metabolismo , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2Y , Receptores Purinérgicos P2Y2 , Receptores Purinérgicos P2Y1 , Trifosfato de Adenosina/fisiologia , Mamíferos/metabolismoRESUMO
Yes-associated protein (YAP) and its homologue TAZ are transducers of several biochemical and biomechanical signals, integrating multiplexed inputs from the microenvironment into higher level cellular functions such as proliferation, differentiation and migration. Emerging evidence suggests that Ca2+ is a key second messenger that connects microenvironmental input signals and YAP/TAZ regulation. However, studies that directly modulate Ca2+ have reported contradictory YAP/TAZ responses: in some studies, a reduction in Ca2+ influx increases the activity of YAP/TAZ, while in others, an increase in Ca2+ influx activates YAP/TAZ. Importantly, Ca2+ and YAP/TAZ exhibit distinct spatiotemporal dynamics, making it difficult to unravel their connections from a purely experimental approach. In this study, we developed a network model of Ca2+ -mediated YAP/TAZ signalling to investigate how temporal dynamics and crosstalk of signalling pathways interacting with Ca2+ can alter the YAP/TAZ response, as observed in experiments. By including six signalling modules (e.g. GPCR, IP3-Ca2+ , kinases, RhoA, F-actin and Hippo-YAP/TAZ) that interact with Ca2+ , we investigated both transient and steady-state cell response to angiotensin II and thapsigargin stimuli. The model predicts that stimuli, Ca2+ transients and frequency-dependent relationships between Ca2+ and YAP/TAZ are primarily mediated by cPKC, DAG, CaMKII and F-actin. Simulation results illustrate the role of Ca2+ dynamics and CaMKII bistable response in switching the direction of changes in Ca2+ -induced YAP/TAZ activity. A frequency-dependent YAP/TAZ response revealed the competition between upstream regulators of LATS1/2, leading to the YAP/TAZ non-monotonic response to periodic GPCR stimulation. This study provides new insights into underlying mechanisms responsible for the controversial Ca2+ -YAP/TAZ relationship observed in experiments. KEY POINTS: YAP/TAZ integrates biochemical and biomechanical inputs to regulate cellular functions, and Ca2+ acts as a key second messenger linking cellular inputs to YAP/TAZ. Studies have reported contradictory Ca2+ -YAP/TAZ relationships for different cell types and stimuli. A network model of Ca2+ -mediated YAP/TAZ signalling was developed to investigate the underlying mechanisms of divergent Ca2+ -YAP/TAZ relationships. The model predicts context-dependent Ca2+ transient, CaMKII bistable response and frequency-dependent activation of LATS1/2 upstream regulators as mechanisms governing the Ca2+ -YAP/TAZ relationship. This study provides new insights into the underlying mechanisms of the controversial Ca2+ -YAP/TAZ relationship to better understand the dynamics of cellular functions controlled by YAP/TAZ activity.
Assuntos
Actinas , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Actinas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , FosforilaçãoRESUMO
Smooth muscle voltage-gated K+ (Kv) channels in resistance arteries control vascular tone and contribute to the coupling of blood flow with local metabolic activity. Members of the Kv1 family are expressed in vascular smooth muscle and are modulated upon physiological elevation of local metabolites, including the glycolytic end-product l-lactate and superoxide-derived hydrogen peroxide (H2 O2 ). Here, we show that l-lactate elicits vasodilatation of small-diameter mesenteric arteries in a mechanism that requires lactate dehydrogenase (LDH). Using the inside-out configuration of the patch clamp technique, we show that increases in NADH that reflect LDH-mediated conversion of l-lactate to pyruvate directly stimulate the activity of single Kv1 channels and significantly enhance the sensitivity of Kv1 activity to H2 O2 . Consistent with these findings, H2 O2 -evoked vasodilatation was significantly greater in the presence of 10 mM l-lactate relative to lactate-free conditions, yet was abolished in the presence of 10 mM pyruvate, which shifts the LDH reaction towards the generation of NAD+ . Moreover, the enhancement of H2 O2 -induced vasodilatation was abolished in arteries from double transgenic mice with selective overexpression of the intracellular Kvß1.1 subunit in smooth muscle cells. Together, our results indicate that the Kvß complex of native vascular Kv1 channels serves as a nodal effector for multiple redox signals to precisely control channel activity and vascular tone in the face of dynamic tissue-derived metabolic cues. KEY POINTS: Vasodilatation of mesenteric arteries by elevated external l-lactate requires its conversion by lactate dehydrogenase. Application of either NADH or H2 O2 potentiates single Kv channel currents in excised membrane patches from mesenteric artery smooth muscle cells. The binding of NADH enhances the stimulatory effects of H2 O2 on single Kv channel activity. The vasodilatory response to H2 O2 is differentially modified upon elevation of external l-lactate or pyruvate. The presence of l-lactate enhances the vasodilatory response to H2 O2 via the Kvß subunit complex in smooth muscle.