RESUMO
BACKGROUND: Efficient management of environmental stresses is essential for sustainable crop production. Calcium (Ca²âº) signaling plays a crucial role in regulating responses to both biotic and abiotic stresses, particularly during host-pathogen interactions. In Arabidopsis thaliana, calmodulin-binding protein 60 (CBP60) family members, such as AtCBP60g, AtCBP60a, and AtSARD1, have been well characterized for their involvement in immune regulation. However, a comprehensive understanding of CBP60 genes in major crops remains limited. METHODS: In this study, we utilized the Phytozome v12.1 database to identify and analyze CBP60 genes in agriculturally important crops. Expression patterns of a Oryza sativa (rice) CBP60 gene, OsCBP60bcd-1, were assessed in resistant and susceptible rice genotypes in response to infection by the bacterial pathogen Xanthomonas oryzae. Localization of CBP60 proteins was analyzed to predict their functional roles, and computational promoter analysis was performed to identify stress-responsive cis-regulatory elements. RESULTS: Phylogenetic analysis revealed that most CBP60 genes in crops belong to the immune-related clade. Expression analysis showed that OsCBP60bcd-1 was significantly upregulated in the resistant rice genotype upon pathogen infection. Subcellular localization studies suggested that the majority of CBP60 proteins are nuclear-localized, indicating a potential role as transcription factors. Promoter analysis identified diverse stress-responsive cis-regulatory elements in the promoters of CBP60 genes, highlighting their regulatory potential under stress conditions. CONCLUSION: The upregulation of OsCBP60bcd-1 in response to Xanthomonas oryzae and the presence of stress-responsive elements in its promoter underscore the importance of CBP60 genes in pathogen defense. These findings provide a basis for further investigation into the functional roles of CBP60 genes in crop disease resistance, with implications for enhancing stress resilience in agricultural species.
Assuntos
Proteínas de Ligação a Calmodulina , Produtos Agrícolas , Regulação da Expressão Gênica de Plantas , Oryza , Filogenia , Doenças das Plantas , Oryza/genética , Oryza/microbiologia , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Xanthomonas/patogenicidade , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla/métodos , Genoma de PlantaRESUMO
The calmodulin-binding protein 60 (CBP60) family is a gene family unique to plants, and its members play a crucial role in plant defense responses to pathogens and growth and development. Considering that cotton is the primary source of natural cotton textile fiber, the functional study of its CBP60 gene family members is critical. In this research, we successfully identified 162 CBP60 members from the genomes of 21 species. Of these, 72 members were found in four cotton species, divided into four clades. To understand the function of GhCBP60B in cotton in depth, we conducted a detailed analysis of its sequence, structure, cis-acting elements, and expression patterns. Research results show that GhCBP60B is located in the nucleus and plays a crucial role in cotton growth and development and response to salt and drought stress. After using VIGS (virus-induced gene silencing) technology to conduct gene silencing experiments, we found that the plants silenced by GhCBP60B showed dwarf plants and shortened stem nodes, and the expression of related immune genes also changed. In further abiotic stress treatment experiments, we found that GhCBP60B-silenced plants were more sensitive to drought and salt stress, and their POD (peroxidase) activity was also significantly reduced. These results imply the vital role of GhCBP60B in cotton, especially in regulating plant responses to drought and salt stress. This study systematically analyzed CBP60 gene family members through bioinformatics methods and explored in depth the biological function of GhCBP60B in cotton. These research results lay a solid foundation for the future use of the GhCBP60B gene to improve cotton plant type and its drought and salt resistance.
Assuntos
Proteínas de Ligação a Calmodulina , Regulação da Expressão Gênica de Plantas , Gossypium , Estresse Fisiológico , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Secas , Genoma de Planta , Gossypium/genética , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genéticaRESUMO
Salicylic acid (SA) plays a key role in plant resistance to pathogens. In Arabidopsis, the isochorismate synthase pathway mainly contributes to pathogen-induced SA synthesis, and the expression of SA synthesis genes is activated by two calmodulin (CaM)-binding protein 60 (CBP60)-type transcription factors, CBP60g and SARD1. In tobacco, the mechanisms underlying SA synthesis remain largely unknown. SA production is induced by wounding in tobacco plants in which the expression of two stress-related mitogen-activated protein kinases is suppressed. Using this phenomenon, we identified genes whose expression is associated with SA synthesis. One of the genes, NtCBP60g, showed 23% amino acid sequence identity with CBP60g. Transient overexpression of NtCBP60g as well as NtSARD1, a tobacco homolog of SARD1, induced SA accumulation in Nicotiana benthamiana leaves. NtCBP60g and NtSARD1 bound CaM, and CaM enhanced SA accumulation induced by NtCBP60g and NtSARD1. Conversely, mutations in NtCBP60g and NtSARD1 that abolished CaM binding reduced their ability to induce SA. Expression profiling and promoter analysis identified two hypersensitivity-related genes, HSR201 and HSR203J as the targets of NtCBP60g and NtSARD1. Virus-induced gene silencing of both NtCBP60g and NtSARD1 homologs compromised SA accumulation and the expression of HSR201 and HSR203J homologs, which were induced by a pathogen-derived elicitor in N. benthamiana leaves. Moreover, elicitor-induced SA accumulation was compromised by silencing of the HSR201 homolog and the HSR203J homolog. These results suggested that HSR201 and HSR203J are regulated by NtCBP60g and NtSARD1 and are required for elicitor-induced SA synthesis.
Assuntos
Arabidopsis , Calmodulina , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Salicylic acid (SA) and pipecolic acid (Pip) play important roles in plant immunity. Here we analyzed the roles of transcription factors TGACG-BINDING FACTOR 1 (TGA1) and TGA4 in regulating SA and Pip biosynthesis in Arabidopsis thaliana. We quantified the expression levels of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g), which encode two master transcription factors of plant immunity, and the accumulation of SA and Pip in tga1-1 tga4-1 mutant plants. We tested whether SARD1 and CBP60g are direct targets of TGA1 by chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR). In addition to promoting pathogen-induced SA biosynthesis, we found that SARD1 and CBP60g also positively regulated Pip biosynthesis by targeting genes encoding key biosynthesis enzymes of Pip. TGA1/TGA4 were required for full induction of SARD1 and CBP60g in plant defense. ChIP-PCR analysis showed that SARD1 was a direct target of TGA1. In tga1-1 tga4-1 mutant plants, the expression levels of SARD1 and CBP60g along with SA and Pip accumulation following pathogen infection were dramatically reduced compared with those in wild-type plants. Consistent with reduced expression of SARD1 and CBP60g, pathogen-associated molecular pattern (PAMP)-induced pathogen resistance and systemic acquired resistance were compromised in tga1-1 tga4-1. Our study showed that TGA1 and TGA4 regulate Pip and SA biosynthesis by modulating the expression of SARD1 and CBP60g.