Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
New Phytol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014537

RESUMO

Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.

2.
New Phytol ; 243(3): 851-865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890801

RESUMO

Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.


Assuntos
Câmbio , Células-Tronco , Xilema , Câmbio/citologia , Câmbio/crescimento & desenvolvimento , Câmbio/fisiologia , Células-Tronco/citologia , Xilema/citologia , Floema/citologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/citologia , Meristema/citologia , Meristema/crescimento & desenvolvimento
3.
Plant Cell Environ ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963121

RESUMO

Perennial trees have a recurring annual cycle of wood formation in response to environmental fluctuations. However, the precise molecular mechanisms that regulate the seasonal formation of wood remain poorly understood. Our prior study indicates that VCM1 and VCM2 play a vital role in regulating the activity of the vascular cambium by controlling the auxin homoeostasis of the cambium zone in Populus. This study indicates that abscisic acid (ABA) affects the expression of VCM1 and VCM2, which display seasonal fluctuations in relation to photoperiod changes. ABA-responsive transcription factors AREB4 and AREB13, which are predominantly expressed in stem secondary vascular tissue, bind to VCM1 and VCM2 promoters to induce their expression. Seasonal changes in the photoperiod affect the ABA amount, which is linked to auxin-regulated cambium activity via the functions of VCM1 and VCM2. Thus, the study reveals that AREB4/AREB13-VCM1/VCM2-PIN5b acts as a molecular module connecting ABA and auxin signals to control vascular cambium activity in seasonal wood formation.

4.
Ann Bot ; 133(7): 953-968, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366549

RESUMO

BACKGROUND AND AIMS: Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees. METHODS: Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time. Using these approaches, we generated high spatial resolution datasets for the vascular cambium, xylem expansion regions, early SCW thickening, late SCW thickening and mature xylem tissues of 71-year-old Pinus bungeana trees. KEY RESULTS: A total of 79 390 non-redundant transcripts, 31 808 long non-coding RNAs and 5147 transcription factors were annotated and quantified in different xylem tissues at all growth and differentiation stages. Furthermore, using this high spatial resolution dataset, we established a comprehensive transcriptomic profile and found that members of the NAC, WRKY, SUS, CESA and LAC gene families are major players in early SCW formation in tracheids, whereas members of the MYB and LBD transcription factor families are highly expressed during late SCW thickening. CONCLUSIONS: Our results provide new molecular insights into the regulation of multi-layered SCW thickening in conifers. The high spatial resolution datasets provided can serve as important gene resources for improving softwoods.


Assuntos
Parede Celular , Pinus , Xilema , Parede Celular/genética , Parede Celular/metabolismo , Pinus/genética , Pinus/crescimento & desenvolvimento , Xilema/genética , Xilema/crescimento & desenvolvimento , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Madeira/genética , Madeira/crescimento & desenvolvimento , Madeira/anatomia & histologia
5.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256092

RESUMO

Secondary development is a key biological characteristic of woody plants and the basis of wood formation. Exogenous nitrogen can affect the secondary growth of poplar, and some regulatory mechanisms have been found in the secondary xylem. However, the effect of nitrogen on cambium has not been reported. Herein, we investigated the effects of different nitrogen concentrations on cambium development using combined transcriptome and metabolome analysis. The results show that, compared with 1 mM NH4NO3 (M), the layers of hybrid poplar cambium cells decreased under the 0.15 mM NH4NO3 (L) and 0.3 mM NH4NO3 (LM) treatments. However, there was no difference in the layers of hybrid poplar cambium cells under the 3 mM NH4NO3 (HM) and 5 mM NH4NO3 (H) treatments. Totals of 2365, 824, 649 and 398 DEGs were identified in the M versus (vs.) L, M vs. LM, M vs. HM and M vs. H groups, respectively. Expression profile analysis of the DEGs showed that exogenous nitrogen affected the gene expression involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the starch and sucrose metabolism pathway and the ubiquitin-mediated proteolysis pathway. In M vs. L, M vs. LM, M vs. HM and M vs. H, differential metabolites were enriched in flavonoids, lignans, coumarins and saccharides. The combined analysis of the transcriptome and metabolome showed that some genes and metabolites in plant hormone signal transduction, phenylpropanoid biosynthesis and starch and sucrose metabolism pathways may be involved in nitrogen regulation in cambium development, whose functions need to be verified. In this study, from the point of view that nitrogen influences cambium development to regulate wood formation, the network analysis of the transcriptome and metabolomics of cambium under different nitrogen supply levels was studied for the first time, revealing the potential regulatory and metabolic mechanisms involved in this process and providing new insights into the effects of nitrogen on wood development.


Assuntos
Câmbio , Populus , Câmbio/genética , Reguladores de Crescimento de Plantas , Transcriptoma , Metaboloma , Nitrogênio , Populus/genética , Amido , Sacarose
6.
J Integr Plant Biol ; 66(3): 443-467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032010

RESUMO

Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.


Assuntos
Árvores , Madeira , Humanos , Madeira/genética , Árvores/genética , Estrutura Molecular , Melhoramento Vegetal , Engenharia Genética
7.
J Integr Plant Biol ; 66(1): 86-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051026

RESUMO

Secondary vascular tissue (SVT) development and regeneration are regulated by phytohormones. In this study, we used an in vitro SVT regeneration system to demonstrate that gibberellin (GA) treatment significantly promotes auxin-induced cambium reestablishment. Altering GA content by overexpressing or knocking down ent-kaurene synthase (KS) affected secondary growth and SVT regeneration in poplar. The poplar DELLA gene GIBBERELLIC ACID INSENSITIVE (PtoGAI) is expressed in a specific pattern during secondary growth and cambium regeneration after girdling. Overexpression of PtoGAI disrupted poplar growth and inhibited cambium regeneration, and the inhibition of cambium regeneration could be partially restored by GA application. Further analysis of the PtaDR5:GUS transgenic plants, the localization of PIN-FORMED 1 (PIN1) and the expression of auxin-related genes found that an additional GA treatment could enhance the auxin response as well as the expression of PIN1, which mediates auxin transport during SVT regeneration. Taken together, these findings suggest that GA promotes cambium regeneration by stimulating auxin signal transduction.


Assuntos
Ácidos Indolacéticos , Populus , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Giberelinas/farmacologia , Câmbio/genética , Regulação da Expressão Gênica de Plantas
8.
BMC Plant Biol ; 23(1): 184, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024801

RESUMO

Heptacodium miconioides is an increasingly popular ornamental plant, originally being endemic to China. The late and long flowering determines its ecological and ornamental value in cultivation. The aims of this research were to define and distinguish phenological phases of the development of Heptacodium miconioides in the temperate zone region and identification of anatomical changes within the stem during autumn in relation to phenological phases and climatic conditions. Phenological observations were carried out in Wroclaw during 2012-2013, as well as in Warsaw (Poland, 52.6°N, 20.5°E) during 2018-2021. During the last year of research an analysis of the anatomical structure was carried out for young stems that bore flowers that year, as well as older, 2- to 6-year-old ones. The material was collected H1 - 10.09., H2 - 28.09., H3 - 16.10., H4 - 3.11., H5 - 21.11. The width of annual increments in subsequent years was determined; length, width and vessel density in early and latewood for subsequent rings of annual growth was measured, as well as the width of the phloem in 1-6-year-old stems (2016-2021). In the vegetative stage three main stages of development were distinguished (leaf buds have the green tips; full autumn discoloration of leaves; leaves falling). In the generative phase, which lasted on average from August 22nd to January the 7th five main phases of development were distinguished (flowering, unripe fruits, ripe fruits, spreading of seeds). Increased average temperature during winter and spring had an effect on the growth pattern: early phenological stages occurred sooner and foliage development lasted 44 days longer. Flowering occurred at a similar date at both observed locations and climatic conditions. This year's shoots flowering on a radial section with axial symmetry, were slightly flattened and in clusters arranged regularly to match the shape. Heptacodium develops 2-6 years old shoots with radial symmetry. The growth ring boundaries are distinct, the wood semi-rings porous, with marked differences in the structure of the primary and secondary shoot. Lignification of tissues before winter ends during late leaf-fall phase. The research indicated the adaptive potential of Heptacodium in response to climatic conditions of temperate zone.


Assuntos
Flores , Folhas de Planta , Polônia , Estações do Ano , Folhas de Planta/fisiologia , Plantas , Temperatura , Mudança Climática
9.
BMC Plant Biol ; 23(1): 500, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848837

RESUMO

BACKGROUND: Wood is a secondary xylem generated by vascular cambium. Vascular cambium activities mainly include cambium proliferation and vascular tissue formation through secondary growth, thereby producing new secondary phloem inward and secondary xylem outward and leading to continuous tree thickening and wood formation. Wood formation is a complex biological process, which is strictly regulated by multiple genes. Therefore, molecular level research on the vascular cambium of different tree ages can lead to the identification of both key and related genes involved in wood formation and further explain the molecular regulation mechanism of wood formation. RESULTS: In the present study, RNA-Seq and Pac-Bio Iso-Seq were used for profiling gene expression changes in Eucalyptus urophylla × Eucalyptus grandis (E. urograndis) vascular cambium at four different ages. A total of 59,770 non-redundant transcripts and 1892 differentially expressed genes (DEGs) were identified. The expression trends of the DEGs related to cell division and differentiation, cell wall biosynthesis, phytohormone, and transcription factors were analyzed. The DEGs encoding expansin, kinesin, cycline, PAL, GRP9, KNOX, C2C2-dof, REV, etc., were highly expressed in E. urograndis at three years old, leading to positive effects on growth and development. Moreover, some gene family members, such as NAC, MYB, HD-ZIP III, RPK, and RAP, play different regulatory roles in wood formation because of their sophisticated transcriptional network and function redundantly. CONCLUSIONS: These candidate genes are a potential resource to further study wood formation, especially in fast-growing and adaptable eucalyptus. The results may also serve as a basis for further research to unravel the molecular mechanism underlying wood formation.


Assuntos
Eucalyptus , Eucalyptus/genética , Eucalyptus/metabolismo , Câmbio/genética , Transcriptoma , Madeira/genética , Xilema , Árvores/genética , Regulação da Expressão Gênica de Plantas
10.
New Phytol ; 237(4): 1154-1163, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052762

RESUMO

Disruption of photosynthesis and carbon transport due to damage to the tree crown and stem cambial cells, respectively, can cause tree mortality. It has recently been proposed that fire-induced dysfunction of xylem plays an important role in tree mortality. Here, we simultaneously tested the impact of a lethal fire dose on nonstructural carbohydrates (NSCs) and xylem hydraulics in Pinus ponderosa saplings. Saplings were burned with a known lethal fire dose. Nonstructural carbohydrates were assessed in needles, main stems, roots and whole plants, and xylem hydraulic conductivity was measured in the main stems up to 29 d postfire. Photosynthesis and whole plant NSCs declined postfire. Additionally, all burned saplings showed 100% phloem/cambium necrosis, and roots of burned saplings had reduced NSCs compared to unburned and defoliated saplings. We further show that, contrary to patterns observed with NSCs, water transport was unchanged by fire and there was no evidence of xylem deformation in saplings that experienced a lethal dose of heat from fire. We conclude that phloem and cambium mortality, and not hydraulic failure, were probably the causes of death in these saplings. These findings advance our understanding of the physiological response to fire-induced injuries in conifer trees.


Assuntos
Fome , Sede , Floema , Carboidratos , Xilema/fisiologia , Árvores/fisiologia , Água , Caules de Planta
11.
New Phytol ; 239(3): 964-978, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282811

RESUMO

The vascular cambium is the main secondary meristem in plants that produces secondary phloem (outside) and xylem (inside) on opposing sides of the cambium. The phytohormone ethylene has been implicated in vascular cambium activity, but the regulatory network underlying ethylene-mediated cambial activity remains to be elucidated. Here, we found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), an ethylene-inducible HOMEODOMAIN-LEUCINE ZIPPER I transcription factor in woody plant rose (Rosa hybrida), regulates local auxin biosynthesis and auxin transport to maintain cambial activity. Knockdown of RhPMP1 resulted in smaller midveins and reduced auxin content, while RhPMP1 overexpression resulted in larger midveins and increased auxin levels compared with the wild-type plants. Furthermore, we revealed that Indole-3-pyruvate monooxygenase YUCCA 10 (RhYUC10) and Auxin transporter-like protein 2 (RhAUX2), encoding an auxin biosynthetic enzyme and an auxin influx carrier, respectively, are direct downstream targets of RhPMP1. In summary, our results suggest that ethylene promotes an auxin maximum in the cambium adjacent to the xylem to maintain cambial activity.


Assuntos
Câmbio , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Etilenos/metabolismo , Xilema/metabolismo , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas
12.
New Phytol ; 238(5): 1972-1985, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36922397

RESUMO

In trees, secondary xylem development is essential for the growth of perennial stem increments. Many signals regulate the process of development, but our knowledge of the molecular components involved in signal transduction is still limited. In this study, we identified Attenuation of Secondary Xylem (ASX) knockouts by screening genome-editing knockouts of xylem-expressed receptor-like kinases (RLKs) in Populus. The ASX role in secondary xylem development in Populus was discovered using biochemical, cellular, and genomic analyses. The ASX knockout plants had abnormal secondary stem growth but had little effect on shoot apical primary growth. ASX and SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)2/4 were co-precipitated in developing xylem. Through their interaction, ASX is phosphorylated by SERK. Transcriptome analysis of developing xylem revealed that ASX deficiency inhibited the transcriptional activity of genes involved in xylem differentiation and secondary cell wall formation. By forming a complex, ASX and SERK may function as a signaling module for signal transduction required in the regulation of secondary xylem development in trees. This study shows that ASX, which encodes a RLKs, is required for secondary xylem development and sheds light on regulatory signals found in tree stem secondary growth.


Assuntos
Populus , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/fisiologia , Perfilação da Expressão Gênica , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas
13.
J Exp Bot ; 74(1): 233-250, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239471

RESUMO

CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides are a class of small molecules involved in plant growth and development. Although radish (Raphanus sativus) is an important root vegetable crop worldwide, the functions of CLE peptides in its taproot formation remain elusive. Here, a total of 48 RsCLE genes were identified from the radish genome. RNA in situ hybridization showed that RsCLE22a gene was highly expressed in the vascular cambium. Overexpression of RsCLE22a inhibited root growth by impairing stem cell proliferation in Arabidopsis, and radish plants with exogenous supplementation of RsCLE22 peptide (CLE22p) showed a similar phenotype. The vascular cambial activity was increased in RsCLE22a-silenced plants. Transcriptome analysis revealed that CLE22p altered the expression of several genes involved in meristem development and hormone signal transduction in radish. Immunolocalization results showed that CLE22p increased auxin accumulation in vascular cambium. Yeast one-hybrid and dual-luciferase assays showed that the WUSCHEL-RELATED HOMEOBOX 4 (RsWOX4) binds to RsCLE22a promoter and activates its transcription. The expression level of RsWOX4 was related to vascular cambial activity and was regulated by auxin. Furthermore, a RsCLE22a-RsWOX4 module is proposed to regulate taproot vascular cambium activity through an auxin signaling-related pathway in radish. These findings provide novel insights into the regulation of root growth in a horticultural crop.


Assuntos
Arabidopsis , Raphanus , Raphanus/genética , Raphanus/metabolismo , Raízes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Arabidopsis/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
14.
Proc Natl Acad Sci U S A ; 117(15): 8649-8656, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234787

RESUMO

For more than 225 million y, all seed plants were woody trees, shrubs, or vines. Shortly after the origin of angiosperms ∼140 million y ago (MYA), the Nymphaeales (water lilies) became one of the first lineages to deviate from their ancestral, woody habit by losing the vascular cambium, the meristematic population of cells that produces secondary xylem (wood) and phloem. Many of the genes and gene families that regulate differentiation of secondary tissues also regulate the differentiation of primary xylem and phloem, which are produced by apical meristems and retained in nearly all seed plants. Here, we sequenced and assembled a draft genome of the water lily Nymphaea thermarum, an emerging system for the study of early flowering plant evolution, and compared it to genomes from other cambium-bearing and cambium-less lineages (e.g., monocots and Nelumbo). This revealed lineage-specific patterns of gene loss and divergence. Nymphaea is characterized by a significant contraction of the HD-ZIP III transcription factors, specifically loss of REVOLUTA, which influences cambial activity in other angiosperms. We also found the Nymphaea and monocot copies of cambium-associated CLE signaling peptides display unique substitutions at otherwise highly conserved amino acids. Nelumbo displays no obvious divergence in cambium-associated genes. The divergent genomic signatures of convergent loss of vascular cambium reveals that even pleiotropic genes can exhibit unique divergence patterns in association with independent events of trait loss. Our results shed light on the evolution of herbaceousness-one of the key biological innovations associated with the earliest phases of angiosperm evolution.


Assuntos
Câmbio/química , Genoma de Planta , Magnoliopsida/genética , Nymphaea/genética , Proteínas de Plantas/genética , Madeira/química , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Nymphaea/crescimento & desenvolvimento , Filogenia , Transcriptoma , Madeira/genética , Madeira/crescimento & desenvolvimento
15.
Proc Natl Acad Sci U S A ; 117(4): 2201-2210, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932448

RESUMO

Aging is a universal property of multicellular organisms. Although some tree species can live for centuries or millennia, the molecular and metabolic mechanisms underlying their longevity are unclear. To address this, we investigated age-related changes in the vascular cambium from 15- to 667-y-old Ginkgo biloba trees. The ring width decreased sharply during the first 100 to 200 y, with only a slight change after 200 y of age, accompanied by decreasing numbers of cambial cell layers. In contrast, average basal area increment (BAI) continuously increased with aging, showing that the lateral meristem can retain indeterminacy in old trees. The indole-3-acetic acid (IAA) concentration in cambial cells decreased with age, whereas the content of abscisic acid (ABA) increased significantly. In addition, cell division-, cell expansion-, and differentiation-related genes exhibited significantly lower expression in old trees, especially miR166 and HD-ZIP III interaction networks involved in cambial activity. Disease resistance-associated genes retained high expression in old trees, along with genes associated with synthesis of preformed protective secondary metabolites. Comprehensive evaluation of the expression of genes related to autophagy, senescence, and age-related miRNAs, together with analysis of leaf photosynthetic efficiencies and seed germination rates, demonstrated that the old trees are still in a healthy, mature state, and senescence is not manifested at the whole-plant level. Taken together, our results reveal that long-lived trees have evolved compensatory mechanisms to maintain a balance between growth and aging processes. This involves continued cambial divisions, high expression of resistance-associated genes, and continued synthetic capacity of preformed protective secondary metabolites.


Assuntos
Câmbio/metabolismo , Ginkgo biloba/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Câmbio/citologia , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Tempo , Árvores/genética , Árvores/metabolismo
16.
Plant J ; 105(6): 1459-1476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33336445

RESUMO

Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.


Assuntos
Arabis/metabolismo , Citocininas/metabolismo , Caules de Planta/metabolismo , Arabis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Amido/metabolismo
17.
Plant J ; 106(5): 1366-1386, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735477

RESUMO

Tree stems undergo a massive secondary growth in which secondary xylem and phloem tissues arise from the vascular cambium. Vascular cambium activity is driven by endogenous developmental signalling cues and environmental stimuli. Current knowledge regarding the genetic regulation of cambium activity and secondary growth is still far from complete. The tropical Cannabaceae tree Parasponia andersonii is a non-legume research model of nitrogen-fixing root nodulation. Parasponia andersonii can be transformed efficiently, making it amenable for CRISPR-Cas9-mediated reverse genetics. We considered whether P. andersonii also could be used as a complementary research system to investigate tree-related traits, including secondary growth. We established a developmental map of stem secondary growth in P. andersonii plantlets. Subsequently, we showed that the expression of the co-transcriptional regulator PanNODULE ROOT1 (PanNOOT1) is essential for controlling this process. PanNOOT1 is orthologous to Arabidopsis thaliana BLADE-ON-PETIOLE1 (AtBOP1) and AtBOP2, which are involved in the meristem-to-organ-boundary maintenance. Moreover, in species forming nitrogen-fixing root nodules, NOOT1 is known to function as a key nodule identity gene. Parasponia andersonii CRISPR-Cas9 loss-of-function Pannoot1 mutants are altered in the development of the xylem and phloem tissues without apparent disturbance of the cambium organization and size. Transcriptomic analysis showed that the expression of key secondary growth-related genes is significantly down-regulated in Pannoot1 mutants. This allows us to conclude that PanNOOT1 positively contributes to the regulation of stem secondary growth. Our work also demonstrates that P. andersonii can serve as a tree research system.


Assuntos
Cannabaceae/genética , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Cannabaceae/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Fixação de Nitrogênio , Fenótipo , Proteínas de Plantas/genética , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Árvores
18.
Development ; 146(10)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31043420

RESUMO

In plants, cells do not migrate. Tissues are frequently arranged in concentric rings; thus, expansion of inner layers is coordinated with cell division and/or expansion of cells in outer layers. In Arabidopsis stems, receptor kinases, PXY and ER, genetically interact to coordinate vascular proliferation and organisation via inter-tissue signalling. The contribution of PXY and ER paralogues to stem patterning is not known, nor is their function understood in hypocotyls, which undergo considerable radial expansion. Here, we show that removal of all PXY and ER gene-family members results in profound cell division and organisation defects. In hypocotyls, these plants failed to transition to true radial growth. Gene expression analysis suggested that PXY and ER cross- and inter-family transcriptional regulation occurs, but it differs between stem and hypocotyl. Thus, PXY and ER signalling interact to coordinate development in a distinct manner in different organs. We anticipate that such specialised local regulatory relationships, where tissue growth is controlled via signals moving across tissue layers, may coordinate tissue layer expansion throughout the plant body.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Câmbio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/metabolismo , Floema/metabolismo , Transdução de Sinais/fisiologia
19.
Development ; 146(1)2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626594

RESUMO

A reduced rate of stem cell division is considered a widespread feature which ensures the integrity of genetic information during somatic development of plants and animals. Radial growth of plant shoots and roots is a stem cell-driven process that is fundamental for the mechanical and physiological support of enlarging plant bodies. In most dicotyledonous species, the underlying stem cell niche, the cambium, generates xylem inwards and phloem outwards. Despite the importance and intriguing dynamics of the cambium, the functional characterization of its stem cells is hampered by the lack of experimental tools for accessing distinct cambium sub-domains. Here, we use the hypocotyl of Arabidopsis thaliana to map stem cell activity in the proliferating cambium. Through pulse labeling and genetically encoded lineage tracing, we find that a single bifacial stem cell generates both xylem and phloem cell lineages. This cell is characterized by a specific combination of PXY (TDR), SMXL5 and WOX4 gene activity and a high division rate in comparison with tissue-specific progenitors. Our analysis provides a cellular fate map of radial plant growth, and suggests that stem cell quiescence is not a general prerequisite for life-long tissue production.This article has an associated 'The people behind the papers' interview.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Câmbio/fisiologia , Floema/fisiologia , Células Vegetais/metabolismo , Desenvolvimento Vegetal/fisiologia , Células-Tronco/metabolismo , Xilema/fisiologia , Arabidopsis/citologia , Proteínas de Arabidopsis/biossíntese , Câmbio/citologia , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/citologia , Hipocótilo/fisiologia , Floema/citologia , Raízes de Plantas/citologia , Raízes de Plantas/fisiologia , Células-Tronco/citologia , Xilema/citologia
20.
BMC Plant Biol ; 22(1): 210, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462532

RESUMO

BACKGROUND: Plants have the lifelong ability to generate new organs due to the persistent functioning of stem cells. In seed plants, groups of stem cells are housed in the shoot apical meristem (SAM), root apical meristem (RAM), and vascular cambium (VC). In ferns, a single shoot stem cell, the apical cell, is located in the SAM, whereas each root initiates from a single shoot-derived root initial. WUSCHEL-RELATED HOMEOBOX (WOX) family transcription factors play important roles to maintain stem-cell identity. WOX genes are grouped phylogenetically into three clades. The T3WOX/modern clade has expanded greatly in angiosperms, with members functioning in multiple meristems and complex developmental programs. The model fern Ceratopteris richardii has only one well-supported T3WOX/modern WOX gene, CrWUL. Its orthologs in Arabidopsis, AtWUS, AtWOX5, and AtWOX4, function in the SAM, RAM, and VC, respectively. Identifying the function of CrWUL will provide insights on the progenitor function and the diversification of the modern WOX genes in seed plants. RESULTS: To investigate the role of CrWUL in the fern, we examined the expression and function of CrWUL and found it expresses during early root development and in vasculature but not in the SAM. Knockdown of CrWUL by RNAi produced plants with fewer roots and fewer phloem cells. When expressed in Arabidopsis cambium, CrWUL was able to complement AtWOX4 function in an atwox4 mutant, suggesting that the WOX function in VC is conserved between ferns and angiosperms. Additionally, the proposed progenitor of T3WOX genes from Selaginella kraussiana is expressed in the vasculature but not in the shoot apical meristem. In contrast to the sporophyte, the expression of CrWUL in the gametophyte exhibits a more general expression pattern and when knocked down, offered little discernable phenotypes. CONCLUSIONS: The results presented here support the occurrence of co-option of the T3WOX/modern clade gene from the gametophyte to function in vasculature and root development in the sporophyte. The function in vasculature is likely to have existed in the progenitor of lycophyte T3WOX/modern clade genes and this function predates its SAM function found in many seed plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gleiquênias , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gleiquênias/genética , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa