Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35914528

RESUMO

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Astrócitos/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Invasividade Neoplásica , Neurônios/fisiologia
2.
Annu Rev Neurosci ; 45: 199-221, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259916

RESUMO

Nervous system activity regulates development, homeostasis, and plasticity of the brain as well as other organs in the body. These mechanisms are subverted in cancer to propel malignant growth. In turn, cancers modulate neural structure and function to augment growth-promoting neural signaling in the tumor microenvironment. Approaching cancer biology from a neuroscience perspective will elucidate new therapeutic strategies for presently lethal forms of cancer. In this review, we highlight the neural signaling mechanisms recapitulated in primary brain tumors, brain metastases, and solid tumors throughout the body that regulate cancer progression.


Assuntos
Neoplasias Encefálicas , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Humanos , Transdução de Sinais/fisiologia , Microambiente Tumoral
3.
FASEB J ; 38(5): e23514, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466151

RESUMO

In the past decade, there has been a steady rise in interest in studying novel cellular extensions and their potential roles in facilitating human diseases, including neurologic diseases, viral infectious diseases, cancer, and others. One of the exciting new aspects of this field is improved characterization and understanding of the functions and potential mechanisms of tunneling nanotubes (TNTs), which are actin-based filamentous protrusions that are structurally distinct from filopodia. TNTs form and connect cells at long distance and serve as direct conduits for intercellular communication in a wide range of cell types in vitro and in vivo. More researchers are entering this field and investigating the role of TNTs in mediating cancer cell invasion and drug resistance, cellular transfer of proteins, RNA or organelles, and intercellular spread of infectious agents, such as viruses, bacteria, and prions. Even further, the elucidation of highly functional membrane tubes called "tumor microtubes" (TMs) in incurable gliomas has further paved a new path for understanding how and why the tumor type is highly invasive at the cellular level and also resistant to standard therapies. Due to the wide-ranging and rapidly growing applicability of TNTs and TMs in pathophysiology across the spectrum of biology, it has become vital to bring researchers in the field together to discuss advances and the future of research in this important niche of protrusion biology.


Assuntos
Estruturas da Membrana Celular , Glioma , Nanotubos , Humanos , Comunicação Celular , Citoesqueleto de Actina
4.
BMC Cancer ; 24(1): 82, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225589

RESUMO

BACKGROUND: Glioblastoma is the most common and most aggressive malignant primary brain tumor in adults. Glioblastoma cells synthesize and secrete large quantities of the excitatory neurotransmitter glutamate, driving epilepsy, neuronal death, tumor growth and invasion. Moreover, neuronal networks interconnect with glioblastoma cell networks through glutamatergic neuroglial synapses, activation of which induces oncogenic calcium oscillations that are propagated via gap junctions between tumor cells. The primary objective of this study is to explore the efficacy of brain-penetrating anti-glutamatergic drugs to standard chemoradiotherapy in patients with glioblastoma. METHODS/DESIGN: GLUGLIO is a 1:1 randomized phase Ib/II, parallel-group, open-label, multicenter trial of gabapentin, sulfasalazine, memantine and chemoradiotherapy (Arm A) versus chemoradiotherapy alone (Arm B) in patients with newly diagnosed glioblastoma. Planned accrual is 120 patients. The primary endpoint is progression-free survival at 6 months. Secondary endpoints include overall and seizure-free survival, quality of life of patients and caregivers, symptom burden and cognitive functioning. Glutamate levels will be assessed longitudinally by magnetic resonance spectroscopy. Other outcomes of interest include imaging response rate, neuronal hyperexcitability determined by longitudinal electroencephalography, Karnofsky performance status as a global measure of overall performance, anticonvulsant drug use and steroid use. Tumor tissue and blood will be collected for translational research. Subgroup survival analyses by baseline parameters include segregation by age, extent of resection, Karnofsky performance status, O6-methylguanine DNA methyltransferase (MGMT) promotor methylation status, steroid intake, presence or absence of seizures, tumor volume and glutamate levels determined by MR spectroscopy. The trial is currently recruiting in seven centers in Switzerland. TRIAL REGISTRATION: NCT05664464. Registered 23 December 2022.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Quimiorradioterapia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Reposicionamento de Medicamentos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glutamatos , Estudos Multicêntricos como Assunto , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Esteroides/uso terapêutico
5.
BMC Cancer ; 24(1): 135, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279087

RESUMO

BACKGROUND: Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS: PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION: This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION: EU-CT number: 2023-503938-52-00 30.11.2023.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Qualidade de Vida , Recidiva Local de Neoplasia/tratamento farmacológico , Convulsões/tratamento farmacológico , Nitrilas/uso terapêutico , Piridonas/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego
6.
J Neurooncol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088157

RESUMO

PURPOSE: This study investigates the biological effect of Tumor Treating Fields (TTFields) on key drivers of glioblastoma's malignancy-tumor microtube (TM) formation-and on the function and overall integrity of the tumor cell network. METHOD: Using a two-dimensional monoculture GB cell network model (2DTM) of primary glioblastoma cell (GBC) cultures (S24, BG5 or T269), we evaluated the effects of TTFields on cell density, interconnectivity and structural integrity of the tumor network. We also analyzed calcium (Ca2+) transient dynamics and network morphology, validating findings in patient-derived tumoroids and brain tumor organoids. RESULTS: In the 2DTM assay, TTFields reduced cell density by 85-88% and disrupted network interconnectivity, particularly in cells with multiple TMs. A "crooked TM" phenotype emerged in 5-6% of treated cells, rarely seen in controls. Ca2+ transients were significantly compromised, with global Ca2+ activity reduced by 51-83%, active and periodic cells by over 50%, and intercellular co-activity by 52% in S24, and almost completely in BG5 GBCs. The effects were more pronounced at 200 kHz compared to a 50 kHz TTFields. Similar reductions in Ca2+ activity were observed in patient-derived tumoroids. In brain tumor organoids, TTFields significantly reduced tumor cell proliferation and infiltration. CONCLUSION: Our comprehensive study provides new insights into the multiple effects of Inovitro-modeled TTFields on glioma progression, morphology and network dynamics in vitro. Future in vivo studies to verify our in vitro findings may provide the basis for a deeper understanding and optimization of TTFields as a therapeutic modality in the treatment of GB.

7.
J Neurooncol ; 166(3): 523-533, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308803

RESUMO

PURPOSE: Glioma is associated with pathologically high (peri)tumoral brain activity, which relates to faster progression. Functional connectivity is disturbed locally and throughout the entire brain, associating with symptomatology. We, therefore, investigated how local activity and network measures relate to better understand how the intricate relationship between the tumor and the rest of the brain may impact disease and symptom progression. METHODS: We obtained magnetoencephalography in 84 de novo glioma patients and 61 matched healthy controls. The offset of the power spectrum, a proxy of neuronal activity, was calculated for 210 cortical regions. We calculated patients' regional deviations in delta, theta and lower alpha network connectivity as compared to controls, using two network measures: clustering coefficient (local connectivity) and eigenvector centrality (integrative connectivity). We then tested group differences in activity and connectivity between (peri)tumoral, contralateral homologue regions, and the rest of the brain. We also correlated regional offset to connectivity. RESULTS: As expected, patients' (peri)tumoral activity was pathologically high, and patients showed higher clustering and lower centrality than controls. At the group-level, regionally high activity related to high clustering in controls and patients alike. However, within-patient analyses revealed negative associations between regional deviations in brain activity and clustering, such that pathologically high activity coincided with low network clustering, while regions with 'normal' activity levels showed high network clustering. CONCLUSION: Our results indicate that pathological activity and connectivity co-localize in a complex manner in glioma. This insight is relevant to our understanding of disease progression and cognitive symptomatology.


Assuntos
Mapeamento Encefálico , Glioma , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Magnetoencefalografia , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética
8.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892423

RESUMO

The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neuroimunomodulação , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Fígado/patologia , Fígado/imunologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sistema Nervoso Autônomo/fisiopatologia
9.
Nervenarzt ; 95(2): 96-103, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-38157044

RESUMO

Recent research indicates that glioblastomas exhibit different neural properties that successfully promote tumor growth, colonize the brain and resist standard treatment. This opens up opportunities for new therapeutic strategies giving rise to the new research field of cancer neuroscience at the interface between oncology and neuroscience. It has been observed that glioblastomas as well as other incurable brain tumor entities, form multicellular tumor networks through long cell projections called tumor microtubes that are molecularly controlled by neuronal developmental mechanisms. These networks provide the tumor with efficient communication and resilience to external perturbations and are tumor-intrinsic continuously activated by pacemaker-like tumor cells. In addition, neuron-tumor networks have been discovered that also exploit direct glutamatergic synaptic contacts between nerve cells and tumor cells. These different neuronal mechanisms of the glioblastoma networks contribute to malignancy and resistance, which is why strategies to separate these multicellular networks were developed and are currently being investigated in initial clinical trials with respect to their therapeutic suitability.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Encéfalo/patologia , Neurônios
10.
Brain ; 145(10): 3654-3665, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130310

RESUMO

It is unclear why exactly gliomas show preferential occurrence in certain brain areas. Increased spiking activity around gliomas leads to faster tumour growth in animal models, while higher non-invasively measured brain activity is related to shorter survival in patients. However, it is unknown how regional intrinsic brain activity, as measured in healthy controls, relates to glioma occurrence. We first investigated whether gliomas occur more frequently in regions with intrinsically higher brain activity. Second, we explored whether intrinsic cortical activity at individual patients' tumour locations relates to tumour and patient characteristics. Across three cross-sectional cohorts, 413 patients were included. Individual tumour masks were created. Intrinsic regional brain activity was assessed through resting-state magnetoencephalography acquired in healthy controls and source-localized to 210 cortical brain regions. Brain activity was operationalized as: (i) broadband power; and (ii) offset of the aperiodic component of the power spectrum, which both reflect neuronal spiking of the underlying neuronal population. We additionally assessed (iii) the slope of the aperiodic component of the power spectrum, which is thought to reflect the neuronal excitation/inhibition ratio. First, correlation coefficients were calculated between group-level regional glioma occurrence, as obtained by concatenating tumour masks across patients, and group-averaged regional intrinsic brain activity. Second, intrinsic brain activity at specific tumour locations was calculated by overlaying patients' individual tumour masks with regional intrinsic brain activity of the controls and was associated with tumour and patient characteristics. As proposed, glioma preferentially occurred in brain regions characterized by higher intrinsic brain activity in controls as reflected by higher offset. Second, intrinsic brain activity at patients' individual tumour locations differed according to glioma subtype and performance status: the most malignant isocitrate dehydrogenase-wild-type glioblastoma patients had the lowest excitation/inhibition ratio at their individual tumour locations as compared to isocitrate dehydrogenase-mutant, 1p/19q-codeleted glioma patients, while a lower excitation/inhibition ratio related to poorer Karnofsky Performance Status, particularly in codeleted glioma patients. In conclusion, gliomas more frequently occur in cortical brain regions with intrinsically higher activity levels, suggesting that more active regions are more vulnerable to glioma development. Moreover, indices of healthy, intrinsic excitation/inhibition ratio at patients' individual tumour locations may capture both tumour biology and patients' performance status. These findings contribute to our understanding of the complex and bidirectional relationship between normal brain functioning and glioma growth, which is at the core of the relatively new field of 'cancer neuroscience'.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/patologia , Estudos Transversais , Mutação , Glioma/patologia , Encéfalo/patologia
11.
Adv Exp Med Biol ; 1329: 271-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664245

RESUMO

The central and autonomic nervous systems interact and converge to build up an adrenergic nerve network capable of promoting cancer. While a local adrenergic sympathetic innervation in peripheral solid tumors influences cancer and stromal cell behavior, the brain can participate to the development of cancer through an intermixed dysregulation of the sympathoadrenal system, adrenergic neurons, and the hypothalamo-pituitary-adrenal axis. A deeper understanding of the adrenergic nerve circuitry within the brain and tumors and its interactions with the microenvironment should enable elucidation of original mechanisms of cancer and novel therapeutic strategies.


Assuntos
Adrenérgicos , Neoplasias , Sistema Nervoso Autônomo , Encéfalo , Humanos , Sistema Hipotálamo-Hipofisário , Microambiente Tumoral
12.
Int J Cancer ; 147(12): 3281-3291, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510582

RESUMO

Despite advances in the treatment of solid tumors, the prognosis of patients with many cancers remains poor, particularly of those with primary and metastatic brain tumors. In the last years, "Cancer Neuroscience" emerged as novel field of research at the crossroads of oncology and classical neuroscience. In primary brain tumors, including glioblastoma (GB), communicating networks that render tumor cells resistant against cytotoxic therapies were identified. To build these networks, GB cells extend neurite-like protrusions called tumor microtubes (TMs). Synapses on TMs allow tumor cells to retrieve neuronal input that fosters growth. Single cell sequencing further revealed that primary brain tumors recapitulate many steps of neurodevelopment. Interestingly, neuronal characteristics, including the ability to extend neurite-like protrusions, neuronal gene expression signatures and interactions with neurons, have now been found not only in brain and neuroendocrine tumors but also in some cancers of epithelial origin. In this review, we will provide an overview about neurite-like protrusions as well as neurodevelopmental origins, hierarchies and gene expression signatures in cancer. We will also discuss how "Cancer Neuroscience" might provide a framework for the development of novel therapies.


Assuntos
Neoplasias Encefálicas/patologia , Redes Reguladoras de Genes , Glioblastoma/patologia , Neurônios/química , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/genética , Glioblastoma/secundário , Humanos , Prognóstico , Análise de Sequência de DNA , Análise de Célula Única
14.
Neuro Oncol ; 26(2): 309-322, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37716001

RESUMO

BACKGROUND: Effective control of brain metastasis remains an urgent clinical need due a limited understanding of the mechanisms driving it. Although the gain of neuro-adaptive attributes in breast-to-brain metastases (BBMs) has been described, the mechanisms that govern this neural acclimation and the resulting brain metastasis competency are poorly understood. Herein, we define the role of neural-specific splicing factor Serine/Arginine Repetitive Matrix Protein 4 (SRRM4) in regulating microenvironmental adaptation and brain metastasis colonization in breast cancer cells. METHODS: Utilizing pure neuronal cultures and brain-naive and patient-derived BM tumor cells, along with in vivo tumor modeling, we surveyed the early induction of mediators of neural acclimation in tumor cells. RESULTS: When SRRM4 is overexpressed in systemic breast cancer cells, there is enhanced BBM leading to poorer overall survival in vivo. Concomitantly, SRRM4 knockdown expression does not provide any advantage in central nervous system metastasis. In addition, reducing SRRM4 expression in breast cancer cells slows down proliferation and increases resistance to chemotherapy. Conversely, when SRRM4/REST4 levels are elevated, tumor cell growth is maintained even in nutrient-deprived conditions. In neuronal coculture, decreasing SRRM4 expression in breast cancer cells impairs their ability to adapt to the brain microenvironment, while increasing SRRM4/RE-1 Silencing Transcription Factor (REST4) levels leads to greater expression of neurotransmitter and synaptic signaling mediators and a significant colonization advantage. CONCLUSIONS: Collectively, our findings identify SRRM4 as a regulator of brain metastasis colonization, and a potential therapeutic target in breast cancer.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Encefálicas/secundário , Neurônios/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Cancer Lett ; 598: 217132, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39059572

RESUMO

Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Feminino , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Microambiente Tumoral , Animais
16.
J Exp Clin Cancer Res ; 43(1): 153, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816706

RESUMO

BACKGROUND: Surgery represents the only curative treatment option for pancreatic ductal adenocarcinoma (PDAC), but recurrence in more than 85% of patients limits the success of curative-intent tumor resection. Neural invasion (NI), particularly the spread of tumor cells along nerves into extratumoral regions of the pancreas, constitutes a well-recognized risk factor for recurrence. Hence, monitoring and therapeutic targeting of NI offer the potential to stratify recurrence risk and improve recurrence-free survival. Based on the evolutionary conserved dual function of axon and vessel guidance molecules, we hypothesize that the proangiogenic vessel guidance factor placental growth factor (PlGF) fosters NI. To test this hypothesis, we correlated PlGF with NI in PDAC patient samples and functionally assessed its role for the interaction of tumor cells with nerves. METHODS: Serum levels of PlGF and its soluble receptor sFlt1, and expression of PlGF mRNA transcripts in tumor tissues were determined by ELISA or qPCR in a retrospective discovery and a prospective validation cohort. Free circulating PlGF was calculated from the ratio PlGF/sFlt1. Incidence and extent of NI were quantified based on histomorphometric measurements and separately assessed for intratumoral and extratumoral nerves. PlGF function on reciprocal chemoattraction and directed neurite outgrowth was evaluated in co-cultures of PDAC cells with primary dorsal-root-ganglia neurons or Schwann cells using blocking anti-PlGF antibodies. RESULTS: Elevated circulating levels of free PlGF correlated with NI and shorter overall survival in patients with PDAC qualifying for curative-intent surgery. Furthermore, high tissue PlGF mRNA transcript levels in patients undergoing curative-intent surgery correlated with a higher incidence and greater extent of NI spreading to tumor-distant extratumoral nerves. In turn, more abundant extratumoral NI predicted shorter disease-free and overall survival. Experimentally, PlGF facilitated directional and dynamic changes in neurite outgrowth of primary dorsal-root-ganglia neurons upon exposure to PDAC derived guidance and growth factors and supported mutual chemoattraction of tumor cells with neurons and Schwann cells. CONCLUSION: Our translational results highlight PlGF as an axon guidance factor, which fosters neurite outgrowth and attracts tumor cells towards nerves. Hence, PlGF represents a promising circulating biomarker of NI and potential therapeutic target to improve the clinical outcome for patients with resectable PDAC.


Assuntos
Neoplasias Pancreáticas , Fator de Crescimento Placentário , Humanos , Fator de Crescimento Placentário/metabolismo , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Feminino , Prognóstico , Masculino , Idoso , Linhagem Celular Tumoral , Invasividade Neoplásica , Pessoa de Meia-Idade , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Biomarcadores Tumorais/metabolismo
17.
Virchows Arch ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042207

RESUMO

Many researchers have focused on the role of the autonomic nervous system in the tumor microenvironment. Autonomic nerves include the sympathetic and parasympathetic nerves, which are known to induce cancer growth and metastasis. However, in salivary duct carcinoma (SDC), a rare and highly malignant tumor, the issue should be investigated from both biological and therapeutic perspectives. We explored the clinicopathological and prognostic implications of the autonomic nerves in 129 SDCs. Immunohistochemistry was performed to determine the nature of each nerve using antibodies against S100, tyrosine hydroxylase (TH) as a sympathetic marker, and vesicular acetylcholine transporter (VAChT) as a parasympathetic marker. The area of each marker-positive nerve was digitized and evaluated quantitatively. Double immunofluorescence for TH and VAChT was performed in selected cases. The expression of the secreted neurotrophins was also examined. S100-positive nerves were present in the cancer tissue in 94 of 129 cases (72.9%). Among them, TH-positive sympathetic nerves and/or VAChT-positive parasympathetic nerves were identified in 92 cases (97.9%), and 59 cases (62.8%) had TH/VAChT-co-expressing nerves. Double immunofluorescence revealed a mosaic pattern of sympathetic and parasympathetic fibers in co-expressing nerve bundles. The presence of autonomic nerves, regardless of their area, was significantly associated with aggressive histological features, advanced T/N classification, and a poor prognosis, with shorter disease-free and overall survival. There was an association between some tumor immune microenvironment-related markers and the autonomic nerve status, but not the latter and the secreted neurotrophin expression. This study suggests that autonomic nerves might play a role in the progression of SDC.

18.
Cancer Lett ; 587: 216689, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367898

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), characterized by heightened neural density, presents a challenging prognosis primarily due to perineural invasion. Recognized for their crucial roles in neural support and myelination, Schwann cells (SCs) significantly influence the process of tumorigenesis. This review succinctly outlines the interplay between PDAC and neural systems, positioning SCs as a nexus in the tumor-neural interface. Subsequently, it delves into the cellular origin and influencers of SCs within the pancreatic tumor microenvironment, emphasizing their multifaceted roles in tumor initiation, progression, and modulation of the neural and immune microenvironment. The discussion encompasses potential therapeutic interventions targeting SCs. Lastly, the review underscores pressing issues, advocating for sustained exploration into the diverse contributions of SCs within the intricate landscape of PDAC, with the aim of enhancing our understanding of their involvement in this complex malignancy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Pâncreas/patologia , Células de Schwann/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Microambiente Tumoral
19.
Neurosci Bull ; 39(11): 1717-1731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37347365

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy, characterized by late diagnosis, aggressive growth, and therapy resistance, leading to a poor overall prognosis. Emerging evidence shows that the peripheral nerve is an important non-tumor component in the tumor microenvironment that regulates tumor growth and immune escape. The crosstalk between the neuronal system and PDAC has become a hot research topic that may provide novel mechanisms underlying tumor progression and further uncover promising therapeutic targets. In this review, we highlight the mechanisms of perineural invasion and the role of various types of tumor innervation in the progression of PDAC, summarize the potential signaling pathways modulating the neuronal-cancer interaction, and discuss the current and future therapeutic possibilities for this condition.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Transdução de Sinais , Nervos Periféricos/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
20.
Am J Cancer Res ; 13(3): 713-726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034231

RESUMO

With the emergence of the scientific research field of tumor microenvironment, the idea that tumor growth and propagation cannot be separated from the tumor microenvironment has become common. The autonomic nervous system is involved in the whole process of growth and development of the organism, and it is undeniable that the tumor microenvironment is equally regulated by both the autonomic nervous system and the immune system. Our research focused on the cancer-nerve crosstalk process and revealed the regulatory mechanisms between the autonomic nervous system and prostate, gastric, pancreatic ductal and breast cancers, mainly elucidating that (1) the release of neurotransmitters and their receptors by autonomic nerves may be important for solid tumor progression, and (2) in combination with the latest targeted small molecule imaging technology, we summarized the biological pathways related to neurotransmitters as small molecule tracers to track solid tumor progression. This research focused on combining targeted small molecules and imaging techniques to observe sympathetic and parasympathetic processes that promote or inhibit cancer development, providing new potential therapeutic targets for prostate, gastric, pancreatic ductal and breast cancers. It also provided cutting-edge research evidence for the development of biological small molecule drugs and targeted tracers in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa