RESUMO
BACKGROUND: The role of microRNA (miRNA) in modulating the function of cancer stem cells through diverse signaling pathway has been evidenced. We here identified a role of microRNA (miRNA) family, specifically miR-148/152, in gastric cancer and delineated its functional effects on gastric cancer stem cells. METHODS: Bioinformatics analysis was conducted to analyze expression of integrin α5 (ITGA5) which was verified through expression determination in clinical tissue samples. Next, the upstream regulatory factors of ITGA5 were determined. CD44+EpCAM (high) cells sorted from AGS cells subjected to gain-of-function experiments, followed by evaluation of their capacity of colony formation, generation of tumorosphere, cell migration and viability in vitro and xenograft tumor formation in vivo. RESULTS: ITGA5 was elevated in gastric cancer tissues and confirmed as a target gene of the miR-148/152 family members. The miR-148/152 family members were downregulated in gastric cancer tissues and cells. Decreased expression of miR-148/152 family members was also detected in gastric cancer stem cells. However, the raised expression led to reduced colony formation, tumorosphere, cell migration, cell viability, and drug resistance of CD44+EpCAM (high) AGS cells in vitro, and tumorigenesis in vitro. ITGA5 overexpression reversed the effect of the miR-148/152 family members. CONCLUSIONS: This study demonstrates that the miR-148/152 family members may prevent gastric cancer stem cell-like properties by targeting ITGA5, which can serve as an appealing target for gastric cancer treatment.
Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação Neoplásica da Expressão Gênica , Integrina alfa5/genética , Integrina alfa5/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologiaRESUMO
Previous studies reported that cancer stem cells (CSCs) might be responsible for drug resistance and cancer progression. Transformation-Related Gene 16 Protein (TRG16), a pseudokinase, was reported to be a suppressor in some types of cancer and its overexpression impaired hepatocellular carcinoma cell stemness. However, the function of TRG16 in BC remains unclear. We found that TRG16 expression was significantly downregulated in BC tissues compared with adjacent tissues (n = 40; P < 0.001) and BC patients with lower expression of TRG16 had a worse prognosis. Forced expression of TRG16 inhibited BC stem cell-like properties as evidenced by decreased CD44-positive cells (CSC marker), reduced mammosphere quantity, and downregulated Nanog, aldehyde dehydrogenase, octamer-binding transcription factor 4, and SRY-box transcription factor 2 expression (CSC markers). Moreover, TRG16 overexpression inhibited self-renewal and invasion capabilities of BC cells in vitro as well as tumor growth in vivo but increased cisplatin sensitivity. However, TRG16 silencing had the opposite effects. Further mechanistic studies revealed that TRG16 was targeted and negatively regulated by miR-765, a facilitator of BC progression. TRG16 could suppress the activation of the NF-κB pathway in BC cells, which is a positive pathway in BC progression and contributes to the maintenance of cancer cell stemness. In conclusion, the results above demonstrate that TRG16, negatively regulated by miR-765, may inhibit the BC progression by regulating BC stem cell-like properties and this inhibition may be mediated by the NF-κB pathway. Our findings indicate that TRG16 may be a potential therapeutic targetable node for BC. TRG16, negatively regulated by miR-765, may inhibit the BC progression through regulating BC stem cell-like properties and this inhibition may be mediated by the NF-κB pathway.
Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , NF-kappa B/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/metabolismo , MicroRNAs/metabolismo , Linhagem Celular TumoralRESUMO
BACKGROUND & AIMS: Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) both exhibit notable cancer stem cell (CSC) features. Moreover, the development of both diseases is closely associated with the presence of CSCs. We investigated the role of brain-expressed X-linked protein 1 (BEX1) in regulating the CSC properties of HB and a subtype of HCC with high CSC features (CSC-HCC). METHODS: Stemness scores were analyzed in 5 murine HCC models. A subpopulation of BEX1-positive cells and BEX1-negative cells were sorted from HCC cell lines, and subjected to transcriptome analysis. The expression and function of BEX1 was examined via western blotting, sphere formation assays, and xenograft tumor models. RESULTS: We identified BEX1 as a novel CSC marker that was required for the self-renewal of liver CSCs. Furthermore, zebularine, a potent DNMT1 inhibitor, can induce the reactivation of BEX1 by removing epigenetic inhibition. Notably, BEX1 was highly expressed in patients with HB and CSC-HCC, but not in patients with non-CSC HCC. Moreover, DNMT1-mediated methylation of the BEX1 promoter resulted in differential BEX1 expression patterns in patients with HB, CSC-HCC, and non-CSC-HCC. Mechanistically, BEX1 interacted with RUNX3 to block its inhibition of ß-catenin transcription, which led to the activation of Wnt/ß-catenin signaling, and stemness maintenance in both HB and CSC-HCC. In contrast, downregulated BEX1 expression released RUNX3 and inhibited the activation of Wnt/ß-catenin signaling in non-CSC-HCC. CONCLUSION: BEX1, under the regulation of DNMT1, is necessary for the self-renewal and maintenance of liver CSCs through activation of Wnt/ß-catenin signaling, rendering BEX1 a potentially valuable therapeutic target in both HB and CSC-HCC. LAY SUMMARY: Cancer stem cells (CSCs) contribute to a high rate of cancer recurrence, as well as resistance to conventional therapies. However, the regulatory mechanisms underlying their self-renewal remains elusive. Herein, we have reported that BEX1 plays a key role in regulating CSC properties in different types of liver cancer. Targeting BEX1-mediated Wnt/ß-catenin signaling may help to address the high rate of recurrence, and heterogeneity of liver cancer.
Assuntos
DNA (Citosina-5-)-Metiltransferase 1/farmacologia , Neoplasias Hepáticas/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Animais , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Expressão Gênica , Neoplasias Hepáticas/epidemiologia , Camundongos , Células-Tronco Neoplásicas/metabolismoRESUMO
A CagA-positive Helicobacter pylori (H. pylori) infection can cause malignant transformation of human gastric mucosal epithelial cells, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a chemical carcinogen that induces gastric carcinogenesis. Whether this environmental chemocarcinogen may synergistically enhance the risk of H. pylori-infected gastric cancer remains unclear. In this study, we adopted a chronic CagA-positive H. pylori infection with or without MNNG coinduction to establish a cellular model in GES-1 cells and an animal model in C57BL/6J mice. The proliferation, cell phenotype, apoptosis, epithelial-mesenchymal transition (EMT), stemness and tumorigenicity of gastric mucosal epithelial cells were analyzed in vitro and in vivo. The results showed that chronic H. pylori-infected GES-1 cells displayed inhibited apoptosis, abnormal proliferation, enhanced invasion, and migration, increased EMT/mesenchymal phenotype, colony formation and stem cell-like properties, and enhanced tumorsphere-formatting efficiency as well as CD44 expression, a known gastric cancer stem cell (CSC) marker. MNNG synergistically promoted the above actions of chronic H. pylori infection. Further studies in chronic H. pylori-infected C57BL/6J mice models showed that an increased incidence of premalignant lesions in the gastric mucosa tissue of the H. pylori-infected mice had occurred, the mouse gastric mucosa cells exhibited similar mesenchymal and CSC-like properties in the above GES-1 cells, and precancerous lesions and EMT/CSC-like phenotypes were reinforced by the synergistic action of MNNG stimulation. H. pylori infection and/or MNNG induction were capable of causing enhanced expression and activation of Wnt2 and ß-catenin, indicating that the Wnt/ß-catenin pathway is involved in the actions of H. pylori and MNNG. Taken together, these findings suggest that chronic CagA-positive H. pylori infection with MNNG stimulation synergistically induces mesenchymal and CSC-like properties of gastric mucosal epithelial cells.
Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , Mesoderma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Linhagem Celular , Movimento Celular , Proliferação de Células , Células Epiteliais/microbiologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metilnitronitrosoguanidina , Camundongos Endogâmicos C57BL , Via de Sinalização WntRESUMO
In breast cancer, the cancer stem cells (CSCs) are thought to be the main cause of metastasis and recurrence. Targeting of CSCs or cancer cells with stem cell-like properties has become a new approach for the treatment of breast cancer. Glabridin (GLA), a phytochemical from the root of Glycyrrhiza glabra, exhibited effective antitumor properties in various human cancer cells. However, the roles of GLA in the regulation of CSC-like properties and the underlying molecular mechanisms remain unclear. Here, we reported that GLA attenuated the CSC-like properties through microRNA-148a (miR-148a)/transforming growth factor beta (TGFß)-SMAD2 signal pathway in vitro and in vivo. In MDA-MB-231 and Hs-578T breast cancer cell lines, GLA enhanced the expression of miR-148a through DNA demethylation. By targeting of the SMAD2-3'-UTR, miR-148a blocked the expression/activation of SMAD2, and in turn, restored the epithelial characteristics, adhesive abilities, and CSC-like properties. Furthermore, in mouse xenograft models, we also confirmed that GLA attenuated the tumor growth, mesenchymal characteristics, and CSCs-like properties via demethylation-activated miR-148a. Our findings suggested a potential treatment strategy to reduce the CSCs-like properties, and therefore enhance the effectiveness of breast cancer therapy.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Isoflavonas/administração & dosagem , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenóis/administração & dosagem , Proteína Smad2/genética , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Abnormal expression of miRNAs has been implicated in the pathogenesis of human lung cancers, most of which are attributable to cigarette smoke. The mechanisms of action, however, remain obscure. Here, we report that there are decreased expression of miR-218 and increased expression of EZH2 and H3K27me3 during cigarette smoke extract (CSE)-induced transformation of human bronchial epithelial (HBE) cells. Depletion of EZH2 by siRNA or by the EZH2 inhibitor, 3-deazaneplanocin A, attenuated CSE-induced decreases of miR-218 levels and increases of H3K27me3, which epigenetically controls gene transcription, and BMI1, an oncogene. Furthermore, ChIP assays demonstrated that EZH2 and H3K27me3 are enriched at the miR-218-1 promoter in HBE cells exposed to CSE, indicating that EZH2 mediates epigenetic silencing of miR-218 via histone methylation. In addition, miR-218 directly targeted BMI1, through which miR-218 ablates cancer stem cells (CSCs) self-renewal in transformed HBE cells. In CSE-transformed HBE cells, the protein level of Oct-4 and mRNA levels of CD133 and CD44, indicators of the acquisition of CSC-like properties, were reduced by over-expression of miR-218, and over-expression of miR-218 decreased the malignancy of transformed HBE cells. Thus, we conclude that epigenetic silencing of miR-218 via EZH2-mediated H3K27 trimethylation is involved in the acquisition of CSC-like properties and malignant transformation of HBE cells induced by CSE and thereby contributes to the carcinogenesis of cigarette smoke.
Assuntos
Transformação Celular Neoplásica/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , MicroRNAs/genética , Fumar/efeitos adversos , Brônquios/citologia , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Lisina/metabolismo , Metilação/efeitos dos fármacos , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismoRESUMO
Effectively targeting cancer stemness is essential for successful cancer therapy. Recent studies have revealed that SOX2, a pluripotent stem cell factor, significantly contributes to cancer stem cell (CSC)-like characteristics closely associated with cancer malignancy. However, its contradictory impact on patient survival in specific cancer types, including lung adenocarcinoma (LUAD), underscores the need for more comprehensive research to clarify its functional effect on cancer stemness. In this study, we demonstrate that SOX2 is not universally required for the regulation of CSC-like properties in LUAD. We generated SOX2 knockouts in A549, H358, and HCC827 LUAD cells using the CRISPR/Cas9 system. Our results reveal unchanged CSC characteristics, including sustained proliferation, tumor sphere formation, invasion, migration, and therapy resistance, compared to normal cells. Conversely, SOX2 knockdown using conditional shRNA targeting SOX2, significantly reduced CSC traits. However, these loss-of-function effects were not rescued by SOX2 resistant to shRNA, underscoring the potential for SOX2 protein level-independent results in prior siRNA- or shRNA-based research. Ultimately, our findings demonstrate that SOX2 is not absolutely essential in LUAD cancer cells. This emphasizes the necessity of considering cancer subtype-dependent and context-dependent factors when targeting SOX2 overexpression as a potential therapeutic vulnerability in diverse cancers.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Células-Tronco Neoplásicas , Fatores de Transcrição SOXB1 , Humanos , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismoRESUMO
Epithelial ovarian cancer remains the lethal gynecological malignancy in women. The representative histotype is high-grade serous carcinoma (HGSC), and most patients with HGSC present at advanced stages with peritoneal dissemination. Since the peritoneal dissemination is the most important factor for poor prognosis of the patients, complete exploration for its molecular mechanisms is mandatory. In this narrative review, being based on the clinical, pathologic, and genomic findings of HGSC, chromosomal instability and epigenetic dynamics have been discussed as the potential drivers for cancer development in the fallopian tube, acquisition of cancer stem cell (CSC)-like properties, and peritoneal metastasis of HGSC. The natural history of carcinogenesis with clonal evolution, and adaptation to microenvironment of peritoneal dissemination of HGSC should be targeted in the novel development of strategies for prevention, early detection, and precision treatment for patients with HGSC.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Instabilidade Cromossômica , Epigênese Genética , Feminino , Humanos , Microambiente TumoralRESUMO
LncRNAs exert important functions in the modulation of tumorigenesis and cancer stem cell-like properties in liver cancer. However, the role of LncRNA Ras suppressor protein 1 pseudogene 2 (RSU1P2) in modulating tumorigenesis and cancer stem cell-like properties in liver cancer is still not known. In this study, the expression of LncRNA RSU1P2 was significantly elevated in liver cancer tissues and cells. Besides, knockdown of RSU1P2 repressed cell viability, invasion, epithelial-mesenchymal transition (EMT) of liver cancer cells and the expressions of cancer stem cell-related genes, whereas facilitated the apoptosis of liver cancer cells. In addition, LncRNA RSU1P2 can interact with microRNA let-7a (let-7a), and repress let-7a expression. Testis-Expressed Protein 10 (Tex10) was identified to be a target of let-7a, and let-7a repressed Tex10 expression. Finally, RSU1P2 knockdown suppressed tumor volume, tumor weight, and EMT in a xenograft model. Therefore, LncRNA RSU1P2 promotes tumorigenesis and cancer stem cell-like properties in liver cancer through let-7a/Tex10 pathway.
Assuntos
Neoplasias Hepáticas , MicroRNAs/genética , Células-Tronco Neoplásicas , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Idoso , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologiaRESUMO
Lung adenocarcinoma (LUAD) is the most predominant subtype of non-small cell lung cancer (NSCLC) that is experiencing the fastest growth rate in incidence. Chemoresistance and the presence of cancer stem cells are considered to be the main obstacles preventing the successful treatment of patients with NSCLC, the molecular mechanism of which remains poorly understood. The present study aimed to investigate the effects of microRNA (miR)-140-3p on cisplatin sensitivity and stem cell-like properties of LUAD cells. Analysis of publicly available data demonstrated that miR-140-3p expression was downregulated in LUAD, and positively associated with the overall survival rate of patients. In addition, transfection with the miR-140-3p mimic reduced LUAD cell viability and induced apoptosis following treatment with cisplatin whilst decreasing stem cell-like properties. miR-140-3p overexpression was also found to attenuate cisplatin resistance and reduce stem cell-like properties in LUAD cells by suppressing Wnt/ß-catenin signaling, all of which were reversed by the overexpression of ß-catenin. Taken together, results of the present study suggest miR-140-3p to be an effective therapeutic strategy for patients with LUAD.
RESUMO
Pancreatic stellate cells (PSCs), a key component of the tumor microenvironment, contribute to tumor invasion, metastasis, and chemoresistance. Osteopontin (OPN), a phosphorylated glycoprotein, is overexpressed in pancreatic cancer. However, OPN expression in PSCs and its potential roles in tumor-stroma interactions remain unclear. The present study first showed that OPN is highly expressed and secreted in activated PSCs driven by hypoxia, and this process is in a ROS-dependent manner; in addition, OPN was shown to be involved in the PSC-induced epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties of pancreatic cancer cells (PCCs). Mechanistically, OPN from activated PSCs interacts with the transmembrane receptor integrin αvß3 on PCCs to upregulate forkhead box protein M1 (FOXM1) expression and induce malignant phenotypes of PCCs. Moreover, the Akt and Erk pathways participate in OPN/integrin αvß3 axis-induced FOXM1 expression of PCCs. Our further analysis showed that OPN and FOXM1 are significantly upregulated in pancreatic cancer tissues and are associated with poor clinical outcome, indicating that OPN and FOXM1 might be considered as diagnostic and prognostic biomarkers for patients with pancreatic cancer. In conclusion, we show here for the first time that OPN promotes the EMT and CSC-like properties of PCCs by activating the integrin αvß3-Akt/Erk-FOXM1 cascade in a paracrine manner, suggesting that targeting the tumor microenvironment represents a promising therapeutic strategy in pancreatic cancer.
Assuntos
Transição Epitelial-Mesenquimal , Proteína Forkhead Box M1/metabolismo , Integrina alfaVbeta3/metabolismo , Células-Tronco Neoplásicas/metabolismo , Osteopontina/metabolismo , Neoplasias Pancreáticas/patologia , Comunicação Parácrina , Hipóxia Tumoral , Adulto , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Adulto JovemRESUMO
BACKGROUND: Accumulating evidence suggests that cancer stem cells (CSCs) play a critical role in tumor initiation, progression and therapy, and recent studies have indicated that Forkhead box C1 (FOXC1) is strongly associated with CSCs. This study investigates the regulatory effects of FOXC1 on CSC-like properties in non-small cell lung cancer (NSCLC). METHODS: We analyzed FOXC1 expression in NSCLC using the Cancer Genome Atlas (TCGA) database on UALCANC and performed survival analyses of NSCLC patients on Human Protein Atlas. CSC-like properties were analyzed based on CSC marker-positive cell population, self-renewal ability, stemness-related gene expression, tumorigenicity and drug resistance. The percentage of CD133+ cells was analyzed by flow cytometric analysis. Self-renewal ability was detected by sphere-formation analysis. Real-time PCR, western blotting and immunohistochemical staining were employed to detect mRNA and protein levels. Tumorigenicity was determined based on a xenograft formation assay, and effects of FOXC1 on drug resistance were assessed by cell viability and apoptosis assays. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to investigate the binding of FOXC1 to beta-catenin promoter. RESULTS: FOXC1 expression was found to be elevated in NSCLC tissues and negatively correlated with patient survival. FOXC1 knockdown reduced CD133+ cell percentage, suppressed self-renewal ability, decreased expression of stemness-related genes (Oct4, NANOG, SOX2 and ABCG2) and inhibited NSCLC cell tumorigenicity in vivo. Moreover, FOXC1 knockdown increased cisplatin and docetaxel sensitivity and reduced gefitinib resistance, whereas FOXC1 overexpression enhanced CSC-like properties. Luciferase reporter and ChIP assays showed beta-catenin to be a direct transcriptional target of FOXC1. Furthermore, overexpression of beta-catenin reversed the CSC-like property inhibition induced by FOXC1 knockdown, and knockdown of beta-catenin attenuated the CSC-like properties induced by FOXC1 overexpression. CONCLUSIONS: This study demonstrates that FOXC1 induces CSC-like properties in NSCLC by promoting beta-catenin expression. The findings indicate that FOXC1 is a potential molecular target for anti-CSC-based therapies in NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Autorrenovação Celular/genética , Fatores de Transcrição Forkhead/genética , beta Catenina/genética , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cisplatino/farmacologia , Docetaxel , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Taxoides/farmacologiaRESUMO
BACKGROUND: Lung cancer stem cells have the ability to self-renew and are resistant to conventional chemotherapy. MicroRNAs (miRNAs) regulate and control the expression and function of many target genes; therefore, miRNA disorders are involved in the pathogenesis of human diseases, such as cancer. However, the effects of miRNA dysregulation on tumour stemness and drug resistance have not been fully elucidated. miR-181b has been reported to be a tumour suppressor miRNA and is associated with drug-resistant non-small cell lung cancer. METHODS: Cancer stem cell (CSC)-like properties were tested by a cell proliferation assay and flow cytometry; miR-181b expression was measured by real-time PCR; and Notch2 and related proteins were detected by Western blotting and immunohistochemistry. A mouse xenograft model was also established. RESULTS: In this study, we found that ectopic miR-181b expression suppressed cancer stem cell properties and enhanced sensitivity to cisplatin (DDP) treatment by directly targeting Notch2. miR-181b could inactivate the Notch2/Hes1 signalling pathway. In addition, tumours from nude mice treated with miR-181b were significantly smaller than tumours from mice treated with control agomir. Decreased miR-181b expression and increased Notch2 expression were observed to have a significant relationship with overall survival (OS) and CSC-like properties in non-small cell lung cancer (NSCLC) patients. CONCLUSIONS: This study elucidates an important role of miR-181b in the regulation of CSC-like properties, suggesting a potential therapeutic target for overcoming drug resistance in NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor Notch2/metabolismo , Animais , Linhagem Celular Tumoral , Cisplatino , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Receptor Notch2/genética , Transdução de SinaisRESUMO
DNA-binding protein inhibitor ID-1 (ID1) serves an essential role in tumor progression, and the self-renewal and pluripotency of embryonic stem cells. However, the effect of ID1 on the stemness and cancer stem cell (CSC)-like properties of gastric adenocarcinoma cells remains to be elucidated. In the present study, effective ID1 knockdown was achieved in gastric cancer (GC) cells using small interfering RNA, and the self-renewal ability and cisplatin (DDP) sensitivity of GC cells was subsequently examined. ID1 knockdown in the MKN-28 and MGC-803 cell lines was demonstrated to significantly suppress colony formation (P=0.005 in MKN-28 and P=0.001 in MGC-803), tumor spheroid formation (P=0.021 in MKN-28 and P=0.037 in MGC-803), cell proliferation (P=0.028 in MKN-28 and P=0.001 in MGC-803) and migration (P=0.002 in MKN-28 and P=0.015 in MGC-803). To the best of our knowledge, the present study revealed for the first time that ID1 knockdown suppresses the expression of the key CSC-associated factors Nanog and octamer-binding protein 4 (Oct-4). It was further demonstrated that ID1 knockdown sensitized GC cells to DDP. In conclusion, knockdown of ID1 attenuates the stem cell like-properties of self-renewal in normal GC cells, potentially through the targeting of Nanog and Oct-4, and subsequently decreases cell proliferation and resistance to DDP. The results of the present study suggest that ID1 functions as an oncogene in GC and regulates the stem cell like-properties of gastric cancer cells by targeting Nanog and Oct-4.
RESUMO
This study investigated the role of cancer/testis antigen DDX53 in regulating cancer stem cell-like properties. DDX53 shows co-expression with CD133, a marker for cancer stem cells. DDX53 directly regulates the SOX-2 expression in anticancer drug-resistant Malme3MR cells. DDX53 and miR-200b were found to be involved in the regulation of tumor spheroid forming potential of Malme3M and Malme3MR cells. Furthermore, the self-renewal activity and the tumorigenic potential of Malme3MR-CD133 (+) cells were also regulated by DDX53. A miR-200b inhibitor induced the direct regulation of SOX-2 by DDX53 We therefore, conclude that DDX53 may serve as an immunotherapeutic target for regulating cancer stem-like properties of melanomas.
Assuntos
RNA Helicases DEAD-box/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/metabolismo , Antígeno AC133/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/farmacologia , Fatores de Transcrição SOXB1/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Radiotherapy is the main locoregional control modality for many types of unresectable tumors, including gastric cancer. However, many patients fail radiotherapy due to intrinsic radioresistance of cancer cells, which has been found to be strongly associated with cancer stem cell (CSC)-like properties. In this study, we developed a nanoparticle formulation to deliver miR-200c, which is reported to inhibit CSC-like properties, and then evaluated its potential activity as a radiosensitizer. miR-200c nanoparticles significantly augmented radiosensitivity in three gastric cancer cell lines (sensitization enhancement ratio 1.13-1.25), but only slightly in GES-1 cells (1.06). In addition to radioenhancement, miR-200c nanoparticles reduced the expression of CD44, a putative CSC marker, and the percentage of CD44(+) BGC823 cells. Meanwhile, other CSC-like properties, including invasiveness and resistance to apoptosis, could be suppressed by miR-200c nanoparticles. CSC-associated radioresistance mechanisms, involving reactive oxygen species levels and DNA repair capacity, were also attenuated. We have demonstrated that miR-200c nanoparticles are an effective radiosensitizer in gastric cancer cells and induce little radiosensitization in normal cells, which suggests that they are as a promising candidate for further preclinical and clinical evaluation.
Assuntos
Gelatinases/metabolismo , Nanocápsulas/química , Peptídeos/farmacocinética , Poliésteres/química , Polietilenoglicóis/química , Radiossensibilizantes/administração & dosagem , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/radioterapia , Linhagem Celular Tumoral , Proteínas de Escherichia coli , Humanos , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Nanocompostos/administração & dosagem , Nanocompostos/química , Nanocompostos/estatística & dados numéricos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Peptídeos/administração & dosagem , Neoplasias Gástricas/genéticaRESUMO
Exposure of humans to inorganic arsenic can cause skin cancer. The acquisition of cancer stem cell-like properties is involved in the initiation of some cancers, and there are changes in let-7 levels in some tumors. The mechanisms of action, however, remain obscure. Here, we report that there are decreased levels of let-7a, let-7b, and let-7c in human keratinocyte HaCaT cells during malignant transformation induced by a low concentration (1.0µM) of arsenite. The process by which arsenite reduces the level of let-7c apparently involves methylation, for 5-aza-2'-deoxycytidine, an inhibitor of methyltransferases, prevents arsenite-induced hypermethylation, decreases the level of let-7c, and thereby blocks arsenite-induced activation of the Ras/NF-κB signal pathway. Let-7c is an up-stream regulator of the Ras/NF-κB signal pathway and down-regulates activation of this pathway. In arsenite-transformed HaCaT cells, the acquisition of cancer stem cell-like properties is prevented by over-expression of let-7c, and over-expression of let-7c decreases the malignancy of transformed HaCaT cells. Thus, we conclude that epigenetic silencing of let-7c via Ras/NF-κB is involved in the acquisition of cancer stem cell-like properties and neoplastic transformation of HaCaT cells induced by arsenite, which contribute to the tumorigenesis of arsenite.