Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770831

RESUMO

Until recently, chirality has not been a major focus in the study of cannabinoids, as most cannabinoids of interest, such as cannabidiol and tetrahydrocannabinol, exist as a single isomer from natural sources. However, this is changing as more cannabinoids are identified, and compounds such as cannabichromene and cannabicyclol are emerging as potential investigatory candidates for varying indications. Because these molecules are chiral, the separation and study of the individual enantiomers' biological and physiological effects should therefore be of interest. The purpose of this study was to identify analytical separation conditions and then adapt those conditions to preparative separation. This was accomplished with a column-screening approach on Daicel's immobilized polysaccharide chiral stationary phases using non-traditional mobile phases, which included dichloromethane, ethyl acetate, and methyl tert-butyl ether under high-performance liquid chromatography conditions. CHIRALPAK® IK was found to separate all four compounds well with mobile phases containing hexane-dichloromethane (with or without an acidic additive). From these methods, the separation productivities were calculated to better visualize the separation scalability, which shows that the kilogram-scale separations of each are feasible.


Assuntos
Cloreto de Metileno , Polissacarídeos , Polissacarídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Dronabinol
2.
Eur J Clin Pharmacol ; 78(2): 259-265, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34664109

RESUMO

PURPOSE: Cannabichromene (CBC) is a phytocannabinoid commonly found in cannabis, yet its acute post-dose pharmacokinetics (PK) have not been examined in humans. This is a secondary data analysis from a trial investigating Spectrum Yellow oil, an oral cannabis product used for medical purposes that contained 20 mg cannabidiol (CBD), 0.9 mg Δ9-tetrahydrocannabinol (THC), and 1.1 mg CBC, per 1 mL of oil. METHODS: Participants (N = 43) were randomized to one of 5 groups: 120 mg CBD, 5.4 mg THC, and 6.6 mg CBC daily; 240 mg CBD, 10.8 mg THC, and 13.2 mg CBC daily; 360 mg CBD, 16.2 mg THC, and 19.8 mg CBC daily; 480 mg CBD, 21.6 mg THC, and 26.4 mg CBC daily; or placebo. Study medication was administered every 12 h for 7 days. Plasma CBC concentrations were analyzed by a validated two-dimensional high-performance liquid chromatography-tandem mass spectrometry assay. RESULTS: After a single dose and after the final dose, the Cmax of CBC increased by 1.3-1.8-fold for each twofold increase in dose; the tmax range was 1.6-4.3 h. Based on the ratio of administered CBD, THC, and CBC to the plasma concentration, the dose of CBD was 18 times higher than the dose of CBC, yet the AUC0-t of CBD was only 6.6-9.8-fold higher than the AUC0-t of CBC; the dose of THC was similar to the dose of CBC, yet THC was quantifiable in fewer plasma samples than was CBC. CONCLUSIONS: CBC may have preferential absorption over CBD and THC when administered together. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry #ACTRN12619001450101, registered 18 October 2019.


Assuntos
Canabidiol/farmacocinética , Canabinoides/farmacocinética , Dronabinol/farmacocinética , Maconha Medicinal/farmacocinética , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Projetos Piloto
3.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566314

RESUMO

The widespread use of phytocannabinoids or cannabis extracts as ingredients in numerous types of products, in combination with the legal restrictions on THC content, has created a need for the development of new, rapid, and universal analytical methods for their quantitation that ideally could be applied without separation and standards. Based on previously described qNMR studies, we developed an expanded 1H qNMR method and a novel 2D-COSY qNMR method for the rapid quantitation of ten major phytocannabinoids in cannabis plant extracts and cannabis-based products. The 1H qNMR method was successfully developed for the quantitation of cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabichromenic acid (CBCA), cannabigerol (CBG), cannabigerolic acid (CBGA), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabinolic acid (Δ9-THCA), Δ8-tetrahydrocannabinol (Δ8-THC), cannabielsoin (CBE), and cannabidivarin (CBDV). Moreover, cannabidivarinic acid (CBDVA) and Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA) can be distinguished from CBDA and Δ9-THCA respectively, while cannabigerovarin (CBGV) and Δ8-tetrahydrocannabivarin (Δ8-THCV) present the same 1H-spectra as CBG and Δ8-THC, respectively. The COSY qNMR method was applied for the quantitation of CBD, CBDA, CBN, CBG/CBGA, and THC/THCA. The two methods were applied for the analysis of hemp plants; cannabis extracts; edible cannabis medium-chain triglycerides (MCT); and hemp seed oils and cosmetic products with cannabinoids. The 1H-NMR method does not require the use of reference compounds, and it requires only a short time for analysis. However, complex extracts in 1H-NMR may have a lot of signals, and quantitation with this method is often hampered by peak overlap, with 2D NMR providing a solution to this obstacle. The most important advantage of the COSY NMR quantitation method was the determination of the legality of cannabis plants, extracts, and edible oils based on their THC/THCA content, particularly in the cases of some samples for which the determination of THC/THCA content by 1H qNMR was not feasible.


Assuntos
Canabidiol , Cannabis , Canabidiol/análise , Canabinol , Cannabis/química , Dronabinol/análise , Extratos Vegetais/análise
4.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500785

RESUMO

Cannabis contains more than 100 phytocannabinoids. Most of these remain poorly characterized, particularly in neurons. We tested a panel of five phytocannabinoids-cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabidivarinic acid (CBDVA), and Δ9-tetrahydrocannabivarin (THCV) in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons expressed a form of CB1-dependent retrograde plasticity while DRGs expressed a variety of transient receptor potential (TRP) channels. CBC, CBDA, and CBDVA had little or no effect on neuronal cannabinoid signaling. CBDV and THCV differentially inhibited cannabinoid signaling. THCV inhibited CB1 receptors presynaptically while CBDV acted post-synaptically, perhaps by inhibiting 2-AG production. None of the compounds elicited a consistent DRG response. In summary, we find that two of five 'minor' phytocannabinoids tested antagonized CB1-based signaling in a neuronal model, but with very different mechanisms. Our findings highlight the diversity of potential actions of phytocannabinoids and the importance of fully evaluating these compounds in neuronal models.


Assuntos
Canabinoides/farmacologia , Modelos Biológicos , Neurônios/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Canabinoides/química , Células Cultivadas , Humanos , Camundongos , Neurônios/metabolismo , Compostos Fitoquímicos/química
5.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771097

RESUMO

Cannabis sativa L. crops have been traditionally exploited as sources of fibers, nutrients, and bioactive phytochemicals of medical interest. In the present study, two terpene-rich organic extracts, namely FOJ and FOS, obtained from Felina 32 hemp inflorescences collected in June and September, respectively, have been studied for their in vitro anticancer properties. Particularly, their cytotoxicity was evaluated in different cancer cell lines, and the possible entourage effect between nonintoxicating phytocannabinoids (cannabidiol and cannabichromene) and caryophyllane sesquiterpenes (ß-caryophyllene, ß-caryophyllene oxide and α-humulene), as identified at GC/MS analysis, was characterized. Modulation of cannabinoid CB1 and CB2 receptors was studied as a mechanistic hypothesis. Results highlighted marked cytotoxic effects of FOJ, FOS, and pure compounds in triple negative breast cancer MDA-MB-468 cells, likely mediated by a CB2 receptor activation. Cannabidiol was the main cytotoxic constituent, although low levels of caryophyllane sesquiterpenes and cannabichromene induced potentiating effects; the presence in the extracts of unknown antagonistic compounds has been highlighted too. These results suggest an interest in Felina 32 hemp inflorescences as a source of bioactive phytocomplexes with anticancer properties and strengthen the importance of considering the possible involvement of minor terpenes, such as caryophyllane sesquiterpenes, in the entourage effect of hemp-based extracts.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Inflorescência/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Antineoplásicos Fitogênicos/química , Cannabis/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Sesquiterpenos Monocíclicos/química , Sesquiterpenos Monocíclicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química , Sesquiterpenos Policíclicos/química , Receptor CB2 de Canabinoide/metabolismo , Neoplasias de Mama Triplo Negativas
6.
Basic Clin Pharmacol Toxicol ; 134(3): 293-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37697481

RESUMO

BACKGROUND: Phytocannabinoids (pCBs) have been shown to inhibit the aggregation and neurotoxicity of the neurotoxic Alzheimer's disease protein beta amyloid (Aß). We characterized the capacity of six pCBs-cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), cannabidivarin (CBDV), cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (Δ9 -THC)-to disrupt Aß aggregation and protect against Aß-evoked neurotoxicity in PC12 cells. METHODS: Neuroprotection against lipid peroxidation and Aß-induced cytotoxicity was assessed using the MTT assay. Transmission electron microscopy was used to visualize pCB effects on Aß aggregation and fluorescence microscopy, with morphometrics and principal component analysis to assess PC12 cell morphology. RESULTS: CBD inhibited lipid peroxidation with no significant effect on Aß toxicity, whilst CBN, CBDV and CBG provided neuroprotection. CBC, CBG and CBN inhibited Aß1-42 -induced neurotoxicity in PC12 cells, as did Δ9 -THC, CBD and CBDV. CBC, CBN and CBDV inhibited Aß aggregation, whilst Δ9 -THC reduced aggregate density. Aß1-42 induced morphological changes in PC12 cells, including a reduction in neuritic projections and rounded cell morphology. CBC and CBG inhibited this effect, whilst Δ9 -THC, CBD and CBDV did not alter Aß1-42 effects on cell morphology. CONCLUSIONS: These findings highlight the neuroprotective activity of CBC, CBG and CBN as novel pCBs associated with variable effects on Aß-evoked neurite damage and inhibition of amyloid ß aggregation.


Assuntos
Canabidiol , Canabinoides , Síndromes Neurotóxicas , Ratos , Animais , Canabinol , Peptídeos beta-Amiloides/toxicidade , Células PC12 , Canabidiol/farmacologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Dronabinol/farmacologia
7.
Toxicol In Vitro ; 99: 105888, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950639

RESUMO

Irinotecan use is linked to the development of gastrointestinal toxicity and inflammation, or gastrointestinal mucositis. Selected phytocannabinoids have been ascribed anti-inflammatory effects in models of gastrointestinal inflammation, associated with maintaining epithelial barrier function. We characterised the mucoprotective capacity of the phytocannabinoids: cannabidiol, cannabigerol, cannabichromene and cannabidivarin in a cell-based model of intestinal epithelial stress occurring in mucositis. Transepithelial electrical resistance (TEER) was measured to determine changes in epithelial permeability in the presence of SN-38 (5 µM) or the pro-inflammatory cytokines TNFα and IL-1ß (each at 100 ng/mL), alone or with concomitant treatment with each of the phytocannabinoids (1 µM). The DCFDA assay was used to determine the ROS-scavenging ability of each phytocannabinoid following treatment with the lipid peroxidant tbhp (200 µM). Each phytocannabinoid provided significant protection against cytokine-evoked increases in epithelial permeability. Cannabidiol, cannabidivarin and cannabigerol were also able to significantly inhibit SN-38-evoked increases in permeability. None of the tested phytocannabinoids inhibited tbhp-induced ROS generation. These results highlight a novel role for cannabidiol, cannabidivarin and cannabigerol as inhibitors of SN-38-evoked increases in epithelial permeability and support the rationale for the further development of novel phytocannabinoids as supportive therapeutics in the management of irinotecan-associated mucositis.


Assuntos
Canabidiol , Canabinoides , Mucosa Intestinal , Irinotecano , Permeabilidade , Espécies Reativas de Oxigênio , Canabinoides/farmacologia , Irinotecano/farmacologia , Permeabilidade/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Canabidiol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Células CACO-2 , Citocinas/metabolismo , Função da Barreira Intestinal
8.
J Am Nutr Assoc ; 43(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37162192

RESUMO

BACKGROUND: Clinical evidence on the use of cannabidiol (CBD) for sleep remains limited. Even fewer studies have tested the comparative effectiveness of cannabinoid formulations found within CBD products used for sleep or how they compare to other complementary therapies such as melatonin. METHODS: Participants (N = 1,793 adults experiencing symptoms of sleep disturbance) were randomly assigned to receive a 4-week supply of 1 of 6 products (all capsules) containing either 15 mg CBD or 5 mg melatonin, alone or in combination with minor cannabinoids. Sleep disturbance was assessed over a period of 5 weeks (baseline week and 4 weeks of product use) using Patient-Reported Outcomes Measurement Information System (PROMIS™) Sleep Disturbance SF 8A, administered via weekly online surveys. A linear mixed-effects regression model was used to assess the differences in the change in sleep disturbance through time between each active product arm and CBD isolate. RESULTS: All formulations exhibited a favorable safety profile (12% of participants reported a side effect and none were severe) and led to significant improvements in sleep disturbance (p < 0.001 in within-group comparisons). Most participants (56% to 75%) across all formulations experienced a clinically important improvement in their sleep quality. There were no significant differences in effect, however, between 15 mg CBD isolate and formulations containing 15 mg CBD and 15 mg cannabinol (CBN), alone or in combination with 5 mg cannabichromene (CBC). There were also no significant differences in effect between 15 mg CBD isolate and formulations containing 5 mg melatonin, alone or in combination with 15 mg CBD and 15 mg CBN. CONCLUSIONS: Our findings suggest that chronic use of a low dose of CBD is safe and could improve sleep quality, though these effects do not exceed that of 5 mg melatonin. Moreover, the addition of low doses of CBN and CBC may not improve the effect of formulations containing CBD or melatonin isolate.


Assuntos
Canabidiol , Canabinoides , Melatonina , Adulto , Humanos , Melatonina/efeitos adversos , Canabinoides/efeitos adversos , Canabinol , Canabidiol/efeitos adversos , Sono
9.
Photochem Photobiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958000

RESUMO

The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 µg/mL) and 35% (3.5 µg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-ß1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-ß1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-ß1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.

10.
Metabolites ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921465

RESUMO

Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2'-hydroxycannabicitran using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2'-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.

11.
Toxicol Rep ; 10: 690-705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396845

RESUMO

Background: Cannabis and cannabinoids affect almost every system of the body and exert systemic effects such as alterations in memory and cognitive functions, neurotransmission impediment, as well as obstruction of endocrine and reproductive system functions. Reproduction is a complicated phenomenon that integrates biological, psychological and behavioural aspects, hence susceptible to intracellular and extracellular modulations by numerous chemicals and toxicants like cannabis. Aim: The effects of early-life exposure to cannabis on reproductive function biomarkers and genes were investigated in male and female Wistar rats in this study. Method: An initial computational analysis (molecular docking and induced fit docking) of some cannabinoids with reproductive enzymes; androgen and follicle stimulating hormone receptors was conducted. Overall, cannabichromene (CBC) had the best IFD scores and binding free energies for the two proteins studied and it interacted with notable amino acids within their active sites. Subsequently, forty (40) Wistar rats, 20 male and 20 female (24-28 days old, weighing 20-28 ± 2 g) were divided into two groups each and orally administered CBC for 21 days. Penile tissues, testes and ovaries, were collected for biochemical analysis (hormonal assays, enzyme activities, and metabolite concentrations), gene expressions, and histological evaluations. Results: Activities of arginase and phosphodiesterase-5 in the penile tissue were significantly increased, while nitric oxide and calcium levels were significantly (p < 0.05) decreased in the CBC-exposed groups relative to the control group. Semen analysis showed significantly more abnormalities and decreased concentration of spermatozoa in the CBC-exposed group compared to the control. Activities of 17ß-hydroxysteroid dehydrogenase and cholesterol level were decreased in both testes and ovaries of CBC-exposed groups. Furthermore, levels of testosterone, progesterone, luteinizing, and follicle-stimulating hormones were reduced in the serum of CBC rats. Moreover, relative expressions of androgen receptor and follicle-stimulating hormone receptor genes were significantly downregulated in the CBC-exposed groups. Histological evaluations revealed lesions, tubular necrosis, and cellular congestions in both the testes and ovaries. Conclusion: This study suggests that pre-puberty exposure to cannabis modulates reproductive functions via cannabichromene inhibition of steroidogenesis, stimulation of erectile dysfunction (modulation of intermediates and enzymes of the endothelial nitric oxide synthase (eNOS) pathway in the penile tissue), and downregulation of the expressions of genes associated with reproduction.

12.
Life (Basel) ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36983897

RESUMO

Phytocannabinoids, with their variety of beneficial effects, represent a valid group of substances that could be employed as neurogenesis-enhancers or neuronal differentiation inducers. We focused our attention on the neuronal-related potential of cannabichromene (CBC) when administered to undifferentiated NSC-34 for 24 h. Transcriptomic analysis showed an upregulation of several neuronal markers, such as Neurod1 and Tubb3, as well as indicators of neuronal differentiation process progression, such as Pax6. An in-depth investigation of the processes involved in neuronal differentiation indicates positive cytoskeleton remodeling by upregulation of Cfl2 and Tubg1, and active differentiation-targeted transcriptional program, suggested by Phox2b and Hes1. After 48 h of treatment, the markers previously examined in the transcriptomic analysis are still overexpressed, like Ache and Hes1, indicating that the differentiation process is still in progress. The lack of GFAP protein suggests that no astroglial differentiation is taking place, and it is reasonable to indicate the neuronal one as the ongoing one. These results indicate CBC as a potential neuronal differentiation inducer for NSC-34 cells.

13.
J Biotechnol ; 363: 40-49, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36681096

RESUMO

Global interest for the minor cannabinoid cannabichromene (CBC) is growing steadily, as potential pharmaceutical applications continue to emerge. Due to low-yielding and unspecific extraction processes from its plant host Cannabis sativa, a biotechnological production is desirable. The complete heterologous biosynthesis of several other cannabinoids has recently been demonstrated as an accessible platform. However, the enzyme involved in the biosynthesis of CBC precursor cannabichromenic acid (CBCA) suffers from comparatively low catalytic efficiency, has not been crystallized, and remains poorly characterized. This study contributes to overcoming these challenges in three unique aspects. A deep­learning­assisted prediction of the CBCA synthase crystal structure using DeepMinds AlphaFold is performed and evaluated. The predicted CBCA synthase structure scored considerably higher in various quality assessments than the alternative template­based homology modeling approach. A robust and practical understanding of crucial structure-function relationships for CBCA synthase is provided and a new binding mode for the substrate uncovered. Rational design approaches and computational analyses to suggest CBCAS variants with facilitated activity are applied. Through subsequent screening the substrate conversion of those variants is compared to the native enzyme. The best variant presented in this study increases CBCA production from crude lysate 22-fold and is one of five positions where substitutions had a significantly favorable impact on product formation.


Assuntos
Canabinoides , Cannabis , Canabinoides/metabolismo , Biotecnologia
14.
Plants (Basel) ; 12(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068603

RESUMO

Cannabichromene (CBC), a non-psychoactive cannabinoid found in Cannabis sativa, has recently been shown to possess several medicinal properties. However, how CBC produces anti-inflammatory effects and the mechanisms of this remain poorly studied. Therefore, we extracted and purified the CBC from the Cannabis sativa cv. pink pepper (hemp cultivar). The efficacy of CBC in reducing inflammation in RAW 264.7 macrophages and a λ-carrageenan-induced mouse model was then evaluated. CBC had no cytotoxicity up to a concentration of 20 µM and inhibited nitric oxide production by approximately 50% at a concentration of 20 µM. In addition, CBC treatment significantly inhibited causes of inflammation such as inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) at both the mRNA and protein levels. Moreover, CBC suppressed LPS-stimulated inflammation in RAW 264.7 cells by downregulating the nuclear factor kappa B (NF-kB) and mitogen-activated protein kinase pathways (MAPK). Furthermore, our in vivo experiments confirmed that the λ-carrageenan-induced increase in the levels of the cytokines iNOS, IL-1ß, and IL-6 was abrogated following treatment with CBC. Therefore, CBC has potential anti-inflammatory effects and may be useful for preventing or treating inflammation.

15.
Cannabis Cannabinoid Res ; 8(S1): S51-S61, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721988

RESUMO

Introduction: Minor cannabinoids are increasingly being consumed in oral formulations (i.e., edibles, tinctures) for medical and nonmedical purposes. This study examined the pharmacokinetics (PKs) of cannabinoids tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabinol (CBN), and delta-8-tetrahydrocannabinol (D8-THC) after the first and last oral dose during a 14-day administration period. Materials and Methods: Sprague-Dawley rats (N=6 animals/dose, 50% female) were given an assigned dose of one of four cannabinoids (THCV=3.2-100 mg/kg, CBC=3.2-100 mg/kg, CBN=1-100 mg/kg, or D8-THC=0.32-10 mg/kg) or vehicle (medium-chain triglyceride oil) through oral gavage once daily for 14 days. Blood was collected 45 min and 1.5, 3, and 24 h following the first dose (day 1) and the last dose (day 14) of repeated oral cannabinoid treatment for PK analysis. Outcomes of interest included time to maximum concentration (Tmax), maximum concentration (Cmax), and area under the concentration versus time curve (AUClast). Dose-normalized (DN) Cmax and DN AUClast were also calculated. Brain tissue was collected 24 h post-administration of the first (day 1) and the last (day 14) dose of each cannabinoid to determine concentrations in brain. Results: All cannabinoids tested were detectable in plasma after single and 14-day repeated dosing. DN Cmax and DN AUClast were highest for D8-THC, followed by CBC, CBN, and THCV. There was no sex difference observed in cannabinoid kinetics. Accumulation of D8-THC in plasma was observed after 14 days of administration. THCV levels in plasma were lower on day 14 compared to day 1, indicating potential adaptation of metabolic pathways and increased drug elimination. Cannabinoids were detected in brain tissue 24 h post-administration of the first and the last dose of 17-100 mg/kg THCV, 3.2-100 mg/kg CBC, 10-100 mg/kg CBN, and 10 mg/kg D8-THC. Conclusions: THCV, CBC, CBN, and D8-THC produced detectable levels in plasma and translocated to brain tissue after the first dose (day 1) and the last dose (day 14) of repeated oral dosing. Examination of PKs of these minor cannabinoids in blood and brain provides a critical step for informing target dose ranges and dosing schedules in future studies that evaluate the potential effects of these compounds.


Assuntos
Encéfalo , Plasma , Feminino , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Canabinol
16.
Pharmaceutics ; 15(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37765249

RESUMO

Cannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabichromene (CBC) are lipophilic compounds with limited water solubility, resulting in challenges related to their bioavailability and therapeutic efficacy upon oral administration. To overcome these limitations, we developed co-dispersion cannabinoid delivery systems with the biopolymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) and magnesium aluminometasilicate (Neusilin US2) to improve solubility and permeability. Recognizing the potential therapeutic benefits arising from the entourage effect, we decided to work with an extract instead of isolated cannabinoids. Cannabis sativa inflorescences (Henola variety) with a confirming neuroprotective activity were subjected to dynamic supercritical CO2 (scCO2) extraction and next they were combined with carriers (1:1 mass ratio) to prepare the co-dispersion cannabinoid delivery systems (HiE). In vitro dissolution studies were conducted to evaluate the solubility of CBD, CBDA, and CBC in various media (pH 1.2, 6.8, fasted, and fed state simulated intestinal fluid). The HiE-Soluplus delivery systems consistently demonstrated the highest dissolution rate of cannabinoids. Additionally, HiE-Soluplus exhibited the highest permeability coefficients for cannabinoids in gastrointestinal tract conditions than it was during the permeability studies using model PAMPA GIT. All three cannabinoids exhibited promising blood-brain barrier (BBB) permeability (Papp higher than 4.0 × 10-6 cm/s), suggesting their potential to effectively cross into the central nervous system. The improved solubility and permeability of cannabinoids from the HiE-Soluplus delivery system hold promise for enhancement in their bioavailability.

17.
Biomedicines ; 12(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38255191

RESUMO

Cannabis sativa contains minor cannabinoids that have potential therapeutic value in pain management. However, detailed experimental evidence for the antinociceptive effects of many of these minor cannabinoids remains lacking. Here, we employed artificial intelligence (AI) to perform compound-protein interaction estimates with cannabichromene (CBC) and receptors involved in nociceptive signaling. Based on our findings, we investigated the antinociceptive properties of CBC in naïve or neuropathic C57BL/6 male and female mice using von Frey (mechanical allodynia), tail-flick (noxious radiant heat), formalin (acute and persistent inflammatory pain), and acetone (cold thermal) tests. For von Frey assessments, CBC dose (0-20 mg/kg, i.p.) and time (0-6 h) responses were measured in male and female neuropathic mice. For tail-flick, formalin, and acetone assays, CBC (20 mg/kg, i.p.) was administered to naïve male and female mice 1 h prior to testing. The results show that CBC (10 and 20 mg/kg, i.p.) significantly reduced mechanical allodynia in neuropathic male and female mice 1-2 h after treatment. Additionally, CBC treatment caused significant reductions in nociceptive behaviors in the tail-flick assay and in both phase 1 and phase 2 of the formalin test. Finally, we found a significant interaction in neuropathic male mice in the acetone test. In conclusion, our results suggest that CBC targets receptors involved in nociceptive signaling and imparts antinociceptive properties that may benefit males and females afflicted with diverse forms of acute or chronic/persistent pain.

18.
J Cannabis Res ; 5(1): 7, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870996

RESUMO

INTRODUCTION: With the legalization of cannabis in multiple jurisdictions throughout the world, a larger proportion of the population consumes cannabis. Several studies have demonstrated anti-tumor effects of components present in cannabis in different models. Unfortunately, little is known about the potential anti-tumoral effects of cannabinoids in bladder cancer and how cannabinoids could potentially synergize with chemotherapeutic agents. Our study aims to identify whether a combination of cannabinoids, like cannabidiol and Δ9-tetrahydrocannabinol, with agents commonly used to treat bladder cancer, such as gemcitabine and cisplatin, can produce desirable synergistic effects. We also evaluated if co-treatment with different cannabinoids resulted in synergistic effects. METHODS: We generated concentration curves with several drugs, including several cannabinoids, to identify the range at which they could exert anti-tumor effects in bladder cancer cell lines. We tested the cytotoxic effects of gemcitabine (up to 100 nM), cisplatin (up to 100 µM), and cannabinoids (up to 10 µM) in T24 and TCCSUP cells. We also evaluated the activation of the apoptotic cascade and whether cannabinoids have the ability to reduce invasion in T24 cells. RESULTS: Cannabidiol, Δ9-tetrahydrocannabinol, cannabichromene, and cannabivarin reduce cell viability of bladder cancer cell lines, and their combination with gemcitabine or cisplatin may induce differential responses, from antagonistic to additive and synergistic effects, depending on the concentrations used. Cannabidiol and Δ9-tetrahydrocannabinol were also shown to induce apoptosis via caspase-3 cleavage and reduce invasion in a Matrigel assay. Cannabidiol and Δ9-tetrahydrocannabinol also display synergistic properties with other cannabinoids like cannabichromene or cannabivarin, although individual cannabinoids may be sufficient to reduce cell viability of bladder cancer cell lines. DISCUSSION: Our results indicate that cannabinoids can reduce human bladder transitional cell carcinoma cell viability, and that they can potentially exert synergistic effects when combined with other agents. Our in vitro results will form the basis for future studies in vivo and in clinical trials for the development of new therapies that could be beneficial for the treatment of bladder cancer in the future.

19.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37242431

RESUMO

Currently, there is an increased interest from both scientists and consumers in the application of cannabis/hemp/phytocannabinoids in skin-related disorders. However, most previous investigations assessed the pharmacological properties of hemp extracts, cannabidiol (CBD), or tetrahydrocannabinol (THC), with very few studies focusing on minor phytocannabinoids from hemp. In this context, the current work explored the in vitro anti-melanoma, anti-melanogenic, and anti-tyrosinase effects of cannabidiol (CBD) and three minor phytocannabinoids, namely cannabigerol (CBG), cannabinol (CBN), and cannabichromene (CBC). Among the tested human malignant melanoma cells (A375, SH4, and G361), only A375 cells were highly susceptible to the 48 h treatment with the four phytocannabinoids (IC50 values between 12.02 and 25.13 µg/mL). When melanogenesis was induced in murine melanoma B16F10 cells by α-melanocyte stimulating hormone (αMSH), CBD, CBG, and CBN significantly decreased the extracellular (29.76-45.14% of αMSH+ cells) and intracellular (60.59-67.87% of αMSH+ cells) melanin content at 5 µg/mL. Lastly, CBN (50-200 µg/mL) inhibited both mushroom and murine tyrosinase, whereas CBG (50-200 µg/mL) and CBC (100-200 µg/mL) down-regulated only the mushroom tyrosinase activity; in contrast, CBD was practically inactive. The current data show that tyrosinase inhibition might not be responsible for reducing the melanin biosynthesis in α-MSH-treated B16F10 cells. By evaluating for the first time the preliminary anti-melanoma, anti-melanogenic, and anti-tyrosinase properties of CBN and CBC and confirming similar effects for CBD and CBG, this study can expand the utilization of CBD and, in particular, of minor phytocannabinoids to novel cosmeceutical products for skin care.

20.
Pharmaceutics ; 15(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37514074

RESUMO

Due to the rapid emergence of multi drug resistant (MDR) pathogens against which current antibiotics are no longer functioning, severe infections are becoming practically untreatable. Consequently, the discovery of new classes of effective antimicrobial agents with novel mechanism of action is becoming increasingly urgent. The bioactivity of Cannabis sativa, an herbaceous plant used for millennia for medicinal and recreational purposes, is mainly due to its content in phytocannabinoids (PCs). Among the 180 PCs detected, cannabidiol (CBD), Δ8 and Δ9-tetrahydrocannabinols (Δ8-THC and Δ9-THC), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN) and some of their acidic precursors have demonstrated from moderate to potent antibacterial effects against Gram-positive bacteria (MICs 0.5-8 µg/mL), including methicillin-resistant Staphylococcus aureus (MRSA), epidemic MRSA (EMRSA), as well as fluoroquinolone and tetracycline-resistant strains. Particularly, the non-psychotropic CBG was also capable to inhibit MRSA biofilm formation, to eradicate even mature biofilms, and to rapidly eliminate MRSA persiter cells. In this scenario, CBG, as well as other minor non-psychotropic PCs, such as CBD, and CBC could represent promising compounds for developing novel antibiotics with high therapeutic potential. Anyway, further studies are necessary, needing abundant quantities of such PCs, scarcely provided naturally by Cannabis plants. Here, after an extensive overture on cannabinoids including their reported antimicrobial effects, aiming at easing the synthetic production of the necessary amounts of CBG, CBC and CBD for further studies, we have, for the first time, systematically reviewed the synthetic pathways utilized for their synthesis, reporting both reaction schemes and experimental details.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa