Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 295(33): 11877-11890, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32616654

RESUMO

Directed migration of endothelial cells (ECs) is an important process during both physiological and pathological angiogenesis. The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the EC surface is necessary for directed migration of these cells. Here, we used TAXIScan, an optically accessible real-time horizontal cell dynamics assay approach, and demonstrate that reactive oxygen species (ROS)-producing NADPH oxidase 4 (NOX4), which is abundantly expressed in ECs, mediates VEGF/VEGFR-2-dependent directed migration. We noted that a continuous supply of endoplasmic reticulum (ER)-retained VEGFR-2 to the plasma membrane is required to maintain VEGFR-2 at the cell surface. siRNA-mediated NOX4 silencing decreased the ER-retained form of VEGFR-2, resulting in decreased cell surface expression levels of the receptor. We also found that ER-localized NOX4 interacts with ER-retained VEGFR-2 and thereby stabilizes this ER-retained form at the protein level in the ER. We conclude that NOX4 contributes to the directed migration of ECs by maintaining VEGFR-2 levels at their surface.


Assuntos
Movimento Celular , Células Endoteliais/citologia , NADPH Oxidase 4/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Células HeLa , Humanos , Estabilidade Proteica , Espécies Reativas de Oxigênio/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L936-L945, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785346

RESUMO

Paracrine erythropoietin (EPO) signaling in the lung recruits endothelial progenitor cells, promotes cell maturation and angiogenesis, and is upregulated during canine postpneumonectomy (PNX) compensatory lung growth. To determine whether inhalational delivery of exogenous EPO augments endogenous post-PNX lung growth, adult canines underwent right PNX and received, via a permanent tracheal stoma, weekly nebulization of recombinant human EPO-containing nanoparticles or empty nanoparticles (control) for 16 wk. Lung function was assessed under anesthesia pre- and post-PNX. The remaining lobes were fixed for detailed morphometric analysis. Compared with control treatment, EPO delivery significantly increased serum EPO concentration without altering systemic hematocrit or hemoglobin concentration and abrogated post-PNX lipid oxidative stress damage. EPO delivery modestly increased post-PNX volume densities of the alveolar septum per unit of lung volume and type II epithelium and endothelium per unit of septal tissue volume in selected lobes. EPO delivery also augmented the post-PNX increase in alveolar double-capillary profiles, a marker of intussusceptive capillary formation, in all remaining lobes. EPO treatment did not significantly alter absolute resting lung volumes, lung and membrane diffusing capacities, alveolar-capillary blood volume, pulmonary blood flow, lung compliance, or extravascular alveolar tissue volumes or surface areas. Results established the feasibility of chronic inhalational delivery of growth-modifying biologics in a large animal model. Exogenous EPO selectively enhanced cytoprotection and alveolar angiogenesis in remaining lobes but not whole-lung extravascular tissue growth or resting function; the nonuniform response contributes to structure-function discrepancy, a major challenge for interventions aimed at amplifying the innate potential for compensatory lung growth.


Assuntos
Capilares/crescimento & desenvolvimento , Eritropoetina/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Pneumonectomia , Alvéolos Pulmonares , Administração por Inalação , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Cães , Complacência Pulmonar/efeitos dos fármacos , Masculino , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/cirurgia
3.
Biotechnol Bioeng ; 115(10): 2643-2653, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981277

RESUMO

The coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adipose-derived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl-modified gelatin (GM) as three-dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate-modified hyaluronic acid and hydroxyapatite particles. After 14 days, the hASC in the stiffer gels (constituting the "bone gels") expressed matrix proteins like collagen type I and fibronectin, as well as bone-specific proteins osteopontin and alkaline phosphatase. After 14 days of coculture with HDMEC-laden hydrogels, the viscoelastic properties of the bone gels were significantly higher compared with the gels in monoculture. Within the soft vascularization gels, the formed capillary-like networks were significantly longer after 14 days of coculture than the structures in the control gels. In addition, the stability as well as the complexity of the vascular networks was significantly increased by coculture. We discussed and concluded that osteogenic and angiogenic signals from the culture media as well as from cocultured cell types, and tissue-specific hydrogel composition all contribute to stimulate the interplay between osteogenesis and angiogenesis in vitro and are a basis for engineering vascularized bone.


Assuntos
Matriz Óssea/metabolismo , Diferenciação Celular , Células Endoteliais/metabolismo , Hidrogéis/química , Osteogênese , Células-Tronco/metabolismo , Alicerces Teciduais/química , Adulto , Técnicas de Cocultura , Durapatita/química , Células Endoteliais/citologia , Feminino , Gelatina/química , Humanos , Ácido Hialurônico/química , Pessoa de Meia-Idade , Neovascularização Fisiológica , Osteopontina/biossíntese , Células-Tronco/citologia
4.
Microvasc Res ; 94: 106-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24925859

RESUMO

Hydroxyurea (HU), or hydroxycarbamide, is used for the treatment of some myeloproliferative and neoplastic diseases, and is currently the only drug approved by the FDA for use in sickle cell disease (SCD). Despite the relative success of HU therapy for SCD, a genetic disorder of the hemoglobin ß chain that results in red-cell sickling, hemolysis, vascular inflammation and recurrent vasoocclusion, the exact mechanisms by which HU actuates remain unclear. We hypothesized that HU may modulate endothelial angiogenic processes, with important consequences for vascular inflammation. The effects of HU (50-200 µM; 17-24 h) on endothelial cell functions associated with key steps of angiogenesis were evaluated using human umbilical vein endothelial cell (HUVEC) cultures. Expression profiles of the HIF1A gene and the miRNAs 221 and 222, involved in endothelial function, were also determined in HUVECs following HU administration and the direct in vivo antiangiogenic effects of HU were assessed using a mouse Matrigel-plug neovascularization assay. Following incubation with HU, HUVECs exhibited high cell viability, but displayed a significant 75% inhibition in the rate of capillary-like-structure formation, and significant decreases in proliferative and invasive capacities. Furthermore, HU significantly decreased HIF1A expression, and induced the expression of miRNA 221, while downregulating miRNA 222. In vivo, HU reduced vascular endothelial growth factor (VEGF)-induced vascular development in Matrigel implants over 7 days. Findings indicate that HU is able to inhibit vessel assembly, a crucial angiogenic process, both in vitro and in vivo, and suggest that some of HU's therapeutic effects may occur through novel vascular mechanisms.


Assuntos
Anemia Falciforme/tratamento farmacológico , Inibidores da Angiogênese/química , Hidroxiureia/química , Animais , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Marcação In Situ das Extremidades Cortadas , Inflamação/tratamento farmacológico , Úlcera da Perna/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Transtornos Mieloproliferativos/tratamento farmacológico , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Parasit Vectors ; 16(1): 105, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927633

RESUMO

BACKGROUND: Angiogenesis is defined as the formation of new vessels by sprouting of endothelial cells from pre-existing vessels in response to stimuli, such as hypoxia or inflammation. Subcutaneous dirofilariasis, caused by Dirofilaria repens, is a zoonotic disease characterized by the formation of subcutaneous nodules with the presence of at least one encapsulated worm, showing perivascular vascularization around it. The aim of this study is to analyze whether the somatic antigen of adult D. repens worms interacts with and modulates the angiogenic mechanism, cell proliferation and migration, and formation of pseudo-capillaries. METHODS: The expression of VEGF-A, VEGFR-1/sFlt, VEGFR-2, mEnd and sEnd in cultures of human vascular endothelial cells stimulated with somatic antigen of adult worms of D. repens (DrSA), vascular endothelial growth factor (VEGF) and DrSA + VEGF were evaluated by using ELISA commercial kits. Cellular viability was analyzed by live cell count, cytotoxicity assays by using a commercial kit, cell proliferation by MTT-based assay, cell migration by wound-healing assay carried out by scratching wounds and capacity of formation of pseudo-capillaries analyzing cell connections and cell groups in Matrigel cell cultures. In all cases unstimulated cultures were used as controls. RESULTS: DrSA + VEGF significantly increased the expression of VEGF-A, VEGFR-2 and mEndoglin compared to other groups and unstimulated cultures. Moreover, DrSA + VEGF produced cell proliferation and migration and increased the formation of pseudo-capillaries. CONCLUSIONS: Somatic antigen of adult D. repens worms activated the proangiogenic mechanism, cell proliferation and cell migration as well as formation of pseudo-capillaries in this in vitro human endothelial cell model. These processes could be related to the survival of adult D. repens in subcutaneous nodules in infected hosts.


Assuntos
Dirofilaria repens , Dirofilariose , Animais , Humanos , Adulto , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Capilares , Proliferação de Células
6.
Vet Parasitol ; 318: 109939, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121093

RESUMO

Angiogenesis is a process by which new vessels are formed from pre-existing ones when the physiological conditions of the vascular endothelium are altered. Heartworm disease, caused by Dirofilaria immitis, causes changes in the vascular endothelium of the pulmonary arteries due to obstruction, friction, and hypoxia. The aim of this study was to analyze whether the excretory/secretory and surface-associated antigens of adult worms interact and modulates the angiogenic mechanism, viable cell number and cell migration, as well as the formation of pseudo-capillaries. Cultures of human vascular endothelial cells (HUVECs) stimulated with excretory/secretory antigens (DiES), surface-associated antigens (Cut) from D. immitis adult worms, VEFG-A (Vascular Endothelial Growth Factor A), as well as DiES+VEFG-A and Cut+VEFG-A were used. The production of VEFG-A and other proangiogenic [soluble VEFGR-2 (sVEFGR-2), membrane Endoglin (mEndoglin)] and antiangiogenic [VEFGR-1/soluble Flt (sFlt), soluble Endoglin (sEndoglin)] molecules was assessed using commercial ELISA kits. Cell viability was analyzed by live cell count and cytotoxicity assays by a commercial kit. In addition, viable cell number by MTT-based assay, cell migration by wound-healing assay carrying out scratched wounds, and the capacity of pseudo-capillary formation to analyze cell connections and cell groups in Matrigel cell cultures, were evaluated. In all cases, non­stimulated cultures were used as controls. DiES+VEFG-A and Cut+VEFG-A significantly increased the production of VEFG-A and sVEFGR-2, and only Cut+VEFG-A significantly increased the production of VEFGR-1/sFlt compared to other groups and non-stimulated cultures. Moreover, only DiES+VEFG-A produced a significant increase in viable cell number and significant decrease cell migration, as well as in the organization and number of cell connections. Excretory/secretory and surface-associated antigens of adult D. immitis activated the angiogenic mechanism by mainly stimulating the synthesis of proangiogenic factors, and only excretory/secretory antigens increased viable cell number, activated cell migration and the formation of pseudo-capillaries. These processes could lead to vascular endothelial remodeling of the infected host and favor the long-term survival of the parasite.


Assuntos
Dirofilaria immitis , Dirofilariose , Humanos , Animais , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos de Superfície , Endoglina/metabolismo
7.
Math Biosci ; 306: 32-48, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30393207

RESUMO

We present a 2D mathematical model of tumor angiogenesis which is an extension of the 1D model originally presented in Levine et al. (2000) [1]. Our model is connected to that 1D model by some transmission and boundary conditions which carry certain cells, the endothelials, pericytes and macrophages from the vessel wall into the extra cellular matrix. In our extended model we also include a mechanism for the action of anti-angiogenic factors such as angiostatin. We present numerical simulations in which we obtain a very good "qualitative agreement" with the time of the onset of vascularization of tumors and with the fact that the capillary tip growth accelerates as it approaches the "tumor".


Assuntos
Modelos Biológicos , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Proteínas Angiogênicas/fisiologia , Angiostatinas/fisiologia , Animais , Capilares/patologia , Movimento Celular , Simulação por Computador , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Humanos , Conceitos Matemáticos , Neoplasias/patologia , Neoplasias/fisiopatologia , Microambiente Tumoral
8.
In Vitro Cell Dev Biol Anim ; 53(1): 20-32, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27586265

RESUMO

As diseases and abnormalities of the heart can interfere with the aquaculture of Atlantic salmon, the heart was investigated as a source of cell lines that could be used to study the cellular basis of these conditions. An Atlantic salmon heart endothelial cell line, ASHe, was developed and characterized for growth properties, endothelial cell characteristics, and responsiveness to lysophosphatidic acid (LPA). AHSe cells stained negative for senescence associated ß-galactosidase and grew well in 10 and 20% FBS/L15 at high cell density, but not in L15 medium supplemented with calf serum. It displayed many endothelial cell-like characteristics including a cobblestone morphology, capillary-like structures formation on Matrigel, and expression of von Willebrand factor and endothelial cell-related tight junction proteins ZO-1, claudin 3, and claudin 5. ASHe cells responded to the cardiovascular modulator, LPA, in two contrasting ways. LPA at 5 and 25 µM inhibited the ability of ASHe cells to heal a wound but stimulated their proliferation, especially as evaluated by colony formation in low-density cultures. The enhancement of proliferation by LPA parallels what has been observed previously in mammalian endothelial cell cultures exposed to LPA, whereas the LPA slowing of ASHe cell migration contrasted with the LPA-enhanced migration of some mammalian cells. Therefore, this cell line is a potentially useful model for future comparative studies on piscine and mammalian cardiovascular cell biology and for studies on diseases of Atlantic salmon in aquaculture.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular/citologia , Células Endoteliais/citologia , Lisofosfolipídeos/farmacologia , Miocárdio/citologia , Animais , Capilares/efeitos dos fármacos , Capilares/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Ensaio de Unidades Formadoras de Colônias , Proteínas do Citoesqueleto/metabolismo , Combinação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Imunofluorescência , Laminina/farmacologia , Proteoglicanas/farmacologia , Salmo salar , Proteínas de Junções Íntimas/metabolismo , Cicatrização/efeitos dos fármacos , Fator de von Willebrand/metabolismo
9.
Acta Biomater ; 11: 333-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25278444

RESUMO

The development of tissue-engineered substitutes of substantial volume is closely associated with the need to ensure rapid vascularization upon grafting. Strategies promoting angiogenesis include the in vitro formation of capillary-like networks within engineered substitutes. We generated both connective and adipose tissues based on a cell sheet technology using human adipose-derived stromal cells. This study evaluates the morphology and extent of the capillary networks that developed upon seeding of human microvascular endothelial cells during tissue production. We posited that adipocyte presence/secretory products could modulate the resulting capillary network when compared to connective substitutes. Analyses including confocal imaging of CD31-labeled capillary-like networks indicated slight differences in their morphological appearance. However, the total volume occupied by the networks as well as the frequency distribution of the structure's volumes were similar between connective and adipose tissues. The average diameter of the capillary structures tended to be 20% higher in reconstructed adipose tissues. Quantification of pro-angiogenic molecules in conditioned media showed greater amounts of leptin (15×), angiopoietin-1 (3.4×) and HGF (1.7×) secreted from adipose than connective tissues at the time of endothelial cell seeding. However, this difference was attenuated during the following coculture period in endothelial cell-containing media, correlating with the minor differences noted between the networks. Taken together, we developed a protocol allowing reconstruction of both connective and adipose tissues featuring well-developed capillary networks in vitro. We performed a detailed characterization of the network architecture within engineered tissues that is relevant for graft assessment before implantation as well as for in vitro screening of angiogenic modulators using three-dimensional models.


Assuntos
Tecido Adiposo/irrigação sanguínea , Capilares/citologia , Capilares/crescimento & desenvolvimento , Tecido Conjuntivo/irrigação sanguínea , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Adipócitos , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Proteínas Angiogênicas/metabolismo , Células Cultivadas , Técnicas de Cocultura , Tecido Conjuntivo/anatomia & histologia , Tecido Conjuntivo/fisiologia , Células Endoteliais/citologia , Humanos , Via Secretória
10.
Cardiovasc Res ; 100(3): 481-91, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24014104

RESUMO

AIMS: Angiogenesis is compromised under conditions of hypercholesterolaemia. Since disturbed angiogenesis predisposes to ischaemic injuries, efforts have been made to promote angiogenesis by delivery of growth factors. How stromal cell-derived growth factor (SDF)-1 influences angiogenesis under conditions reflecting hypercholesterolaemia was unknown. METHODS AND RESULTS: We investigated the effects of SDF-1, administered alone or in combination with vascular endothelial growth factor (VEGF), on angiogenesis using proliferation, transwell migration, and Matrigel-based tube formation assays with human umbilical vein endothelial cells that were exposed to low-density lipoprotein (LDL). We observed that SDF-1 dose-dependently enhanced angiogenesis, but only partly reversed the LDL-mediated suppression of angiogenesis. Reduced abundance of SDF-1's receptor, CXCR4, was noted on the surface of LDL-exposed endothelial cells. In subcellular localization studies combined with pharmacological experiments, we showed that the loss of CXCR4 resulted from its internalization and degradation. SDF-1 synergistically increased angiogenesis when combined with VEGF. As a consequence, angiogenesis was fully restored. SDF-1 reduced oxidized LDL formation and increased the anti-oxidant capacity of endothelial cells, most strongly when administered together with VEGF. CONCLUSION: Combination therapies of growth factors, specifically SDF-1 and VEGF, might enhance angiogenesis more successfully than monotherapies under conditions of hypercholesterolaemia.


Assuntos
Indutores da Angiogênese/farmacologia , Quimiocina CXCL12/farmacologia , Endocitose , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores CXCR4/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa