Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69.069
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 221-246, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29328786

RESUMO

Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4+ T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/imunologia , Metabolismo Energético , Epigênese Genética , Animais , Biomarcadores , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
2.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37127263

RESUMO

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese
3.
Cell ; 179(6): 1255-1263.e12, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778652

RESUMO

The living world is largely divided into autotrophs that convert CO2 into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO2 as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO2. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO2 fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Processos Autotróficos/fisiologia , Isótopos de Carbono , Evolução Molecular Direcionada , Escherichia coli/genética , Marcação por Isótopo , Engenharia Metabólica , Análise do Fluxo Metabólico , Mutação/genética
4.
Cell ; 175(6): 1546-1560.e17, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500537

RESUMO

Mammalian folate metabolism is comprised of cytosolic and mitochondrial pathways with nearly identical core reactions, yet the functional advantages of such an organization are not well understood. Using genome-editing and biochemical approaches, we find that ablating folate metabolism in the mitochondria of mammalian cell lines results in folate degradation in the cytosol. Mechanistically, we show that QDPR, an enzyme in tetrahydrobiopterin metabolism, moonlights to repair oxidative damage to tetrahydrofolate (THF). This repair capacity is overwhelmed when cytosolic THF hyperaccumulates in the absence of mitochondrially produced formate, leading to THF degradation. Unexpectedly, we also find that the classic antifolate methotrexate, by inhibiting its well-known target DHFR, causes even more extensive folate degradation in nearly all tested cancer cell lines. These findings shed light on design features of folate metabolism, provide a biochemical basis for clinically observed folate deficiency in QDPR-deficient patients, and reveal a hitherto unknown and unexplored cellular effect of methotrexate.


Assuntos
Carbono/metabolismo , Citosol/metabolismo , Formiatos/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Tetra-Hidrofolatos/metabolismo , Citosol/patologia , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Metotrexato/farmacocinética , Metotrexato/farmacologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tetra-Hidrofolato Desidrogenase/metabolismo
5.
Cell ; 171(1): 133-147.e14, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938113

RESUMO

Approximately one-third of global CO2 fixation is performed by eukaryotic algae. Nearly all algae enhance their carbon assimilation by operating a CO2-concentrating mechanism (CCM) built around an organelle called the pyrenoid, whose protein composition is largely unknown. Here, we developed tools in the model alga Chlamydomonas reinhardtii to determine the localizations of 135 candidate CCM proteins and physical interactors of 38 of these proteins. Our data reveal the identity of 89 pyrenoid proteins, including Rubisco-interacting proteins, photosystem I assembly factor candidates, and inorganic carbon flux components. We identify three previously undescribed protein layers of the pyrenoid: a plate-like layer, a mesh layer, and a punctate layer. We find that the carbonic anhydrase CAH6 is in the flagella, not in the stroma that surrounds the pyrenoid as in current models. These results provide an overview of proteins operating in the eukaryotic algal CCM, a key process that drives global carbon fixation.


Assuntos
Proteínas de Algas/metabolismo , Ciclo do Carbono , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Proteínas de Algas/química , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Chlamydomonas reinhardtii/química , Cloroplastos/química , Proteínas Luminescentes/análise , Microscopia Confocal , Fotossíntese , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938114

RESUMO

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Assuntos
Chlamydomonas reinhardtii/citologia , Cloroplastos/ultraestrutura , Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Biogênese de Organelas , Ribulose-Bifosfato Carboxilase/metabolismo
7.
Mol Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38996576

RESUMO

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.

8.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767747

RESUMO

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Assuntos
Inflamação/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Purinas/biossíntese , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Transdução de Sinais
9.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343498

RESUMO

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Assuntos
Antioxidantes/farmacologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Selênio/farmacologia , Selenoproteína W/metabolismo , Células Th1/citologia , Diferenciação Celular/imunologia , Polaridade Celular , Colo/imunologia , Colo/patologia , Glicina Hidroximetiltransferase/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/metabolismo , Células Th1/imunologia , Ubiquitina-Proteína Ligases/metabolismo
10.
Mol Cell ; 81(11): 2290-2302.e7, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33831358

RESUMO

Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.


Assuntos
Carcinoma Ductal Pancreático/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Neoplasias Pancreáticas/genética , Células Estreladas do Pâncreas/metabolismo , Evasão Tumoral/efeitos dos fármacos , Aloenxertos , Animais , Antineoplásicos/farmacologia , Carbono/imunologia , Carbono/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Formiatos/imunologia , Formiatos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interferon gama/genética , Interferon gama/imunologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Oximas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Serina/imunologia , Serina/metabolismo , Serina/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Triptofano/imunologia , Triptofano/metabolismo , Triptofano/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
11.
EMBO J ; 43(14): 3072-3083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806660

RESUMO

Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco's carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.


Assuntos
Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Cinética , Dióxido de Carbono/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Bactérias/genética
12.
EMBO J ; 42(13): e112333, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183585

RESUMO

Enteric bacteria use up to 15% of their cellular energy for ammonium assimilation via glutamine synthetase (GS)/glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) in response to varying ammonium availability. However, the sensory mechanisms for effective and appropriate coordination between carbon metabolism and ammonium assimilation have not been fully elucidated. Here, we report that in Salmonella enterica, carbon metabolism coordinates the activities of GS/GDH via functionally reversible protein lysine acetylation. Glucose promotes Pat acetyltransferase-mediated acetylation and activation of adenylylated GS. Simultaneously, glucose induces GDH acetylation to inactivate the enzyme by impeding its catalytic centre, which is reversed upon GDH deacetylation by deacetylase CobB. Molecular dynamics (MD) simulations indicate that adenylylation is required for acetylation-dependent activation of GS. We show that acetylation and deacetylation occur within minutes of "glucose shock" to promptly adapt to ammonium/carbon variation and finely balance glutamine/glutamate synthesis. Finally, in a mouse infection model, reduced S. enterica growth caused by the expression of adenylylation-mimetic GS is rescued by acetylation-mimicking mutations. Thus, glucose-driven acetylation integrates signals from ammonium assimilation and carbon metabolism to fine-tune bacterial growth control.


Assuntos
Compostos de Amônio , Salmonella enterica , Animais , Camundongos , Compostos de Amônio/metabolismo , Acetilação , Carbono/metabolismo , Glucose , Glutamato Desidrogenase/metabolismo , Nitrogênio/metabolismo
13.
Mol Cell ; 75(6): 1147-1160.e5, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31420217

RESUMO

Activated macrophages adapt their metabolic pathways to drive the pro-inflammatory phenotype, but little is known about the biochemical underpinnings of this process. Here, we find that lipopolysaccharide (LPS) activates the pentose phosphate pathway, the serine synthesis pathway, and one-carbon metabolism, the synergism of which drives epigenetic reprogramming for interleukin-1ß (IL-1ß) expression. Glucose-derived ribose and one-carbon units fed by both glucose and serine metabolism are synergistically integrated into the methionine cycle through de novo ATP synthesis and fuel the generation of S-adenosylmethionine (SAM) during LPS-induced inflammation. Impairment of these metabolic pathways that feed SAM generation lead to anti-inflammatory outcomes, implicating SAM as an essential metabolite for inflammatory macrophages. Mechanistically, SAM generation maintains a relatively high SAM:S-adenosylhomocysteine ratio to support histone H3 lysine 36 trimethylation for IL-1ß production. We therefore identify a synergistic effect of glucose and amino acid metabolism on orchestrating SAM availability that is intimately linked to the chromatin state for inflammation.


Assuntos
Histonas/metabolismo , Macrófagos Peritoneais/metabolismo , S-Adenosilmetionina/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/patologia , Masculino , Metilação/efeitos dos fármacos , Camundongos
14.
Proc Natl Acad Sci U S A ; 121(10): e2304613121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408243

RESUMO

Marine particulate organic carbon (POC) contributes to carbon export, food webs, and sediments, but uncertainties remain in its origins. Globally, variations in stable carbon isotope ratios (δ13C values) of POC between the upper and lower euphotic zones (LEZ) indicate either varying aspects of photosynthetic communities or degradative alteration of POC. During summertime in the subtropical north Atlantic Ocean, we find that δ13C values of the photosynthetic product phytol decreased by 6.3‰ and photosynthetic carbon isotope fractionation (εp) increased by 5.6‰ between the surface and the LEZ-variation as large as that found in the geologic record during major carbon cycle perturbations, but here reflecting vertical variation in δ13C values of photosynthetic communities. We find that simultaneous variations in light intensity and phytoplankton community composition over depth may be important factors not fully accounted for in common models of photosynthetic carbon isotope fractionation. Using additional isotopic and cell count data, we estimate that photosynthetic and non-photosynthetic material (heterotrophs or detritus) contribute relatively constant proportions of POC throughout the euphotic zone but are isotopically more distinct in the LEZ. As a result, the large vertical differences in εp result in significant, but smaller, differences in the δ13C values of total POC across the same depths (2.7‰). Vertical structuring of photosynthetic communities and export potential from the LEZ may vary across current and past ocean ecosystems; thus, LEZ photosynthesis may influence the exported and/or sedimentary δ13C values of both phytol and total organic carbon and affect interpretations of εp over geologic time.


Assuntos
Carbono , Ecossistema , Isótopos de Carbono/análise , Fotossíntese , Fitol , Oceanos e Mares
15.
Proc Natl Acad Sci U S A ; 121(11): e2313842121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437541

RESUMO

Soil organic carbon (SOC) mineralization is a key component of the global carbon cycle. Its temperature sensitivity Q10 (which is defined as the factor of change in mineralization with a 10 °C temperature increase) is crucial for understanding the carbon cycle-climate change feedback but remains uncertain. Here, we demonstrate the universal control of carbon quality-availability tradeoffs on Q10. When carbon availability is not limited, Q10 is controlled by carbon quality; otherwise, substrate availability controls Q10. A model driven by such quality-availability tradeoffs explains 97% of the spatiotemporal variability of Q10 in incubations of soils across the globe and predicts a global Q10 of 2.1 ± 0.4 (mean ± one SD) with higher Q10 in northern high-latitude regions. We further reveal that global Q10 is predominantly governed by the mineralization of high-quality carbon. The work provides a foundation for predicting SOC dynamics under climate and land use changes which may alter soil carbon quality and availability.

16.
Proc Natl Acad Sci U S A ; 121(21): e2319652121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739805

RESUMO

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

17.
Proc Natl Acad Sci U S A ; 121(25): e2322120121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875151

RESUMO

Life harnessing light energy transformed the relationship between biology and Earth-bringing a massive flux of organic carbon and oxidants to Earth's surface that gave way to today's organotrophy- and respiration-dominated biosphere. However, our understanding of how life drove this transition has largely relied on the geological record; much remains unresolved due to the complexity and paucity of the genetic record tied to photosynthesis. Here, through holistic phylogenetic comparison of the bacterial domain and all photosynthetic machinery (totally spanning >10,000 genomes), we identify evolutionary congruence between three independent biological systems-bacteria, (bacterio)chlorophyll-mediated light metabolism (chlorophototrophy), and carbon fixation-and uncover their intertwined history. Our analyses uniformly mapped progenitors of extant light-metabolizing machinery (reaction centers, [bacterio]chlorophyll synthases, and magnesium-chelatases) and enzymes facilitating the Calvin-Benson-Bassham cycle (form I RuBisCO and phosphoribulokinase) to the same ancient Terrabacteria organism near the base of the bacterial domain. These phylogenies consistently showed that extant phototrophs ultimately derived light metabolism from this bacterium, the last phototroph common ancestor (LPCA). LPCA was a non-oxygen-generating (anoxygenic) phototroph that already possessed carbon fixation and two reaction centers, a type I analogous to extant forms and a primitive type II. Analyses also indicate chlorophototrophy originated before LPCA. We further reconstructed evolution of chlorophototrophs/chlorophototrophy post-LPCA, including vertical inheritance in Terrabacteria, the rise of oxygen-generating chlorophototrophy in one descendant branch near the Great Oxidation Event, and subsequent emergence of Cyanobacteria. These collectively unveil a detailed view of the coevolution of light metabolism and Bacteria having clear congruence with the geological record.


Assuntos
Bactérias , Fotossíntese , Filogenia , Fotossíntese/genética , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Ciclo do Carbono , Evolução Biológica , Evolução Molecular , Coevolução Biológica
18.
Proc Natl Acad Sci U S A ; 121(13): e2305030121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517975

RESUMO

During wildfires and fossil fuel combustion, biomass is converted to black carbon (BC) via incomplete combustion. BC enters the ocean by rivers and atmospheric deposition contributing to the marine dissolved organic carbon (DOC) pool. The fate of BC is considered to reside in the marine DOC pool, where the oldest BC 14C ages have been measured (>20,000 14C y), implying long-term storage. DOC is the largest exchangeable pool of organic carbon in the oceans, yet most DOC (>80%) remains molecularly uncharacterized. Here, we report 14C measurements on size-fractionated dissolved BC (DBC) obtained using benzene polycarboxylic acids as molecular tracers to constrain the sources and cycling of DBC and its contributions to refractory DOC (RDOC) in a site in the North Pacific Ocean. Our results reveal that the cycling of DBC is more dynamic and heterogeneous than previously believed though it does not comprise a single, uniformly "old" 14C age. Instead, both semilabile and refractory DBC components are distributed among size fractions of DOC. We report that DBC cycles within DOC as a component of RDOC, exhibiting turnover in the ocean on millennia timescales. DBC within the low-molecular-weight DOC pool is large, environmentally persistent and constitutes the size fraction that is responsible for long-term DBC storage. We speculate that sea surface processes, including bacterial remineralization (via the coupling of photooxidation of surface DBC and bacterial co-metabolism), sorption onto sinking particles and surface photochemical oxidation, modify DBC composition and turnover, ultimately controlling the fate of DBC and RDOC in the ocean.

19.
Proc Natl Acad Sci U S A ; 121(18): e2317332121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669180

RESUMO

Soil organic carbon (SOC) is vital for terrestrial ecosystems, affecting biogeochemical processes, and soil health. It is known that soil salinity impacts SOC content, yet the specific direction and magnitude of SOC variability in relation to soil salinity remain poorly understood. Analyzing 43,459 mineral soil samples (SOC < 150 g kg-1) collected across different land covers since 1992, we approximate a soil salinity increase from 1 to 5 dS m-1 in croplands would be associated with a decline in mineral soils SOC from 0.14 g kg-1 above the mean predicted SOC ([Formula: see text] = 18.47 g kg-1) to 0.46 g kg-1 below [Formula: see text] (~-430%), while for noncroplands, such decline is sharper, from 0.96 above [Formula: see text] = 35.96 g kg-1 to 4.99 below [Formula: see text] (~-620%). Although salinity's significance in explaining SOC variability is minor (<6%), we estimate a one SD increase in salinity of topsoil samples (0 to 7 cm) correlates with respective [Formula: see text] declines of ~4.4% and ~9.26%, relative to [Formula: see text] and [Formula: see text]. The [Formula: see text] decline in croplands is greatest in vegetation/cropland mosaics while lands covered with evergreen needle-leaved trees are estimated with the highest [Formula: see text] decline in noncroplands. We identify soil nitrogen, land cover, and precipitation Seasonality Index as the most significant parameters in explaining the SOC's variability. The findings provide insights into SOC dynamics under increased soil salinity, improving understanding of SOC stock responses to land degradation and climate warming.

20.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598339

RESUMO

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa