Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34011610

RESUMO

In terms of ideal future energy storage systems, besides the always-pursued energy/power characteristics, long-term stability is crucial for their practical application. Here, we report a facile and sustainable strategy for the scalable fabrication of carbon aerogels with three-dimensional interconnected nanofiber networks and rationally designed hierarchical porous structures, which are based on the carbonization of bacterial cellulose assisted by the soft template of Zn-1,3,5-benzenetricarboxylic acid. As binder-free electrodes, they deliver a fundamentally enhanced specific capacitance of 352 F ⋅ g-1 at 1 A ⋅ g-1 in a wide potential window (1.2 V, 6 M KOH) in comparison with those of bacterial cellulose-derived carbons (178 F ⋅ g-1) and most activated carbons (usually lower than 250 F ⋅ g-1). The as-assembled supercapacitors exhibit an ultrahigh capacitance of 297 F ⋅ g-1 at 1 A ⋅ g-1, remarkable energy density (14.83 Wh ⋅ kg-1 at 0.60 kW ⋅ kg-1), and extremely high stability, with 100% capacitance retention for up to 65,000 cycles at 6 A ⋅ g-1, representing their superior energy storage performance when compared with that of state-of-the-art supercapacitors of commercial activated carbons and biomass-derived analogs.

2.
J Environ Manage ; 347: 119114, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783084

RESUMO

In this study, an in situ grown FeCo-Layered double hydroxide anchored to the surface of a bulk carbon aerogel (FeCo-LDH/CA) for contaminant degradation during the heterogeneous electro-Fenton (EF) process. The results exhibited that the FeCo-LDH/CA cathode achieved 100% of 2,4-dichlorophenol (2,4-DCP = 20 mg/L) degradation within 120 min at pH = 3, application current 20 mA, and Na2SO4 concentration 0.05 M. Moreover, the degradation efficiency was impressive in the range of pH = 2-9. The coexistence of the Fe (III)/Fe (II) and Co (III)/Co (II) as active sites on the cathode surface promoted the in-situ decomposition of H2O2 to form reactive oxygen species (ROS). •OH and O2- were confirmed to be the major degradation pollutants of ROS. Furthermore, density functional theory (DFT) was used to predict the reaction sites of 2,4-DCP, and its possible degradation pathways were proposed. The toxicity of intermediate products was evaluated and decreased after degradation. In addition, the eight cycle experiments and the degradation of other typical contaminants demonstrated the satisfactory stability and applicability of the synthetic cathode. This study presents the preparation of an efficient and stable EF cathode, further promoting the application of iron-based composites in wastewater treatment.


Assuntos
Carbono , Poluentes Químicos da Água , Carbono/química , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/química , Oxirredução , Poluentes Químicos da Água/química , Fenóis , Eletrodos
3.
Nano Lett ; 21(9): 3731-3737, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33719451

RESUMO

Maintaining fast charging capability at low temperatures represents a significant challenge for supercapacitors. The performance of conventional porous carbon electrodes often deteriorates quickly with the decrease of temperature due to sluggish ion and charge transport. Here we fabricate a 3D-printed multiscale porous carbon aerogel (3D-MCA) via a unique combination of chemical methods and the direct ink writing technique. 3D-MCA has an open porous structure with a large surface area of ∼1750 m2 g-1. At -70 °C, the symmetric device achieves outstanding capacitance of 148.6 F g-1 at 5 mV s-1. Significantly, it retains a capacitance of 71.4 F g-1 at a high scan rate of 200 mV s-1, which is 6.5 times higher than the non-3D printed MCA. These values rank among the best results reported for low temperature supercapacitors. These impressive results highlight the essential role of open porous structures for preserving capacitive performance at ultralow temperatures.

4.
Mikrochim Acta ; 188(4): 135, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33759064

RESUMO

We prepared, for the first time, carbon aerogels support on Pd-WO3 nanorods (CAs/Pd-WO3) hybrid nanocomposite via sol-gel and microwave-assisted methods. The as-prepared CAs/Pd-WO3-modified electrode was used as effective electrocatalyst for nanomolar level detection of mesalazine (MSA). The typical porous nature of carbon aerogels effectively prevented the aggregation of Pd-doped WO3 nanorods and increased the electrochemically active surface area. In addition, the Pd-WO3 nanointerface provides intrinsic improvement of the electrocatalytic activity and stability for the electrochemical oxidation process, and the interconnected conducting network of the porous surfaces of CAs accelerated rapid electron transport at the working electrode. The synergistic effect of the CAs/Pd-WO3 architecture has excellent electrocatalytic activity for the detection of MSA with high sensitivity of 2.403 ± 0.004 µA µM-1 cm-2, low detection limit of 0.8 ± 0.3 nM and wide linear response from 0.003-350 µM at a low applied potential of 0.30 V vs. Ag|AgCl. Satisfactory results were observed for its analytical performance in detecting MSA in human blood serum and urine samples, and recoveries ranged from 98.8 to 100.4%. We believe that the architecture of the modified CAs/Pd-WO3 electrocatalysts can be effectively used in clinical applications for the detection of MSA.

5.
Angew Chem Int Ed Engl ; 59(27): 11123-11129, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32239780

RESUMO

Electroreduction of CO2 to CO powered by renewable electricity is a possible alternative to synthesizing CO from fossil fuel. However, it is very hard to achieve high current density at high faradaic efficiency (FE). Here, the first use of N,P-co-doped carbon aerogels (NPCA) to boost CO2 reduction to CO is presented. The FE of CO could reach 99.1 % with a partial current density of -143.6 mA cm-2 , which is one of the highest current densities to date. NPCA has higher electrochemical active area and overall electronic conductivity than that of N- or P-doped carbon aerogels, which favors electron transfer from CO2 to its radical anion or other key intermediates. By control experiments and theoretical calculations, it is found that the pyridinic N was very active for CO2 reduction to CO, and co-doping of P with N hinder the hydrogen evolution reaction (HER) significantly, and thus the both current density and FE are very high.

6.
Angew Chem Int Ed Engl ; 59(5): 2066-2070, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31846187

RESUMO

Carbon aerogels (CAs) with 3D interconnected networks hold promise for application in areas such as pollutant treatment, energy storage, and electrocatalysis. In spite of this, it remains challenging to synthesize high-performance CAs on a large scale in a simple and sustainable manner. We report an eco-friendly method for the scalable synthesis of ultralight and superporous CAs by using cheap and widely available agarose (AG) biomass as the carbon precursor. Zeolitic imidazolate framework-8 (ZIF-8) with high porosity is introduced into the AG aerogels to increase the specific surface area and enable heteroatom doping. After pyrolysis under inert atmosphere, the ZIF-8/AG-derived nitrogen-doped CAs show a highly interconnected porous mazelike structure with a low density of 24 mg cm-3 , a high specific surface area of 516 m2 g-1 , and a large pore volume of 0.58 cm-3 g-1 . The resulting CAs exhibit significant potential for application in the adsorption of organic pollutants.

7.
Chemistry ; 25(11): 2877-2883, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30600850

RESUMO

Herein, an ordinary and mass-production approach is reported to synthesize boron (B) and nitrogen (N) co-doped three-dimensional (3D) carbon aerogels (CA) by using glucose and borax as the raw materials by a simple hydrothermal method and then carbonization in NH3 atmosphere. The porous material (BN-CA-900) possesses a large specific surface area (1032 m2 g-1 ) and high contents of doped pyridinic N and graphitic N. The onset potential (0.91 V vs. reversible hydrogen electrode, RHE), half-wave potential (0.77 V vs. RHE), and current density (5.70 mA cm-2 at 0.2 V vs. RHE) of BN-CA-900 for ORR are similar to those of commercial Pt/C, indicating that BN-CA-900 has a comparable catalytic activity with Pt/C in alkaline media. The number of electron transfer is 3.86-3.99 and the yield of hydrogen peroxide is less than 6.8 %. BN-CA-900 also presents decent catalytic performance in acidic medium. Moreover, the stability and methanol tolerance of BN-CA-900 are superior to commercial Pt/C in both alkaline and acidic media. The prepared BN-CA-900 is a promising candidate that may be applied in other areas, such as the adsorption of pollution, porous conductive electrodes, and lithium-ion batteries.

8.
Chemistry ; 23(43): 10460-10464, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499067

RESUMO

The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatom-doped catalysts.

9.
Nano Lett ; 16(10): 6516-6522, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27599048

RESUMO

The commercialization of Zn-air batteries has been impeded by the lack of low-cost, highly active, and durable catalysts that act independently for oxygen electrochemical reduction and evolution. Here, we demonstrate excellent performance of NiCo nanoparticles anchored on porous fibrous carbon aerogels (NiCo/PFC aerogels) as bifunctional catalysts toward the Zn-air battery. This material is designed and synthesized by a novel K2Ni(CN)4/K3Co(CN)6-chitosan hydrogel-derived method. The outstanding performance of NiCo/PFC aerogels is confirmed as a superior air-cathode catalyst for a rechargeable Zn-air battery. At a discharge-charge current density of 10 mA cm-2, the NiCo/PFC aerogels enable a Zn-air battery to cycle steadily up to 300 cycles for 600 h with only a small increase in the round-trip overpotential, notably outperforming the more costly Pt/C+IrO2 mixture catalysts (60 cycles for 120 h). With the simplicity of the synthetic method and the outstanding electrocatalytic performance, the NiCo/PFC aerogels are promising electrocatalysts for Zn-air batteries.

10.
Angew Chem Int Ed Engl ; 55(47): 14623-14627, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27607518

RESUMO

Polymer-derived carbon aerogels can be obtained by direct polymerization of monomers under hypersaline conditions using inorganic salts. This allows for significantly increased mechanical robustness and avoiding special drying processes. This concept was realized by conducting the polymerization of phenol-formaldehyde (PF) in the presence of ZnCl2 salt. Afterwards, the simultaneous carbonization and foaming process conveniently converts the PF monolith into a foam-like carbon aerogel. ZnCl2 plays a key role, serving as dehydration agent, foaming agent, and porogen. The carbon aerogels thus obtained are of very low density (25 mg cm-3 ), high specific surface area (1340 m2 g-1 ), and have a large micro- and mesopore volume (0.75 cm3 g-1 ). The carbon aerogels show very promising potential in the separation/extraction of organic pollutants and for energy storage.

11.
Small ; 10(21): 4352-61, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25044991

RESUMO

The design and synthesis of highly active, durable, and cheap nanomaterials for various renewable energy storage and conversion applications is extremely desirable but remains challenging. Here, a green and efficient strategy to produce CoOx nanoparticles and surface N-co-doped carbon aerogels (Co-N-CAs) is reported by multicomponent surface self-assembly of commercially melamine sponge (CMS). In the methodology, the CMS simultaneously function as green N precursor for surface N doping and 3D support. The resulting Co-N-CAs exhibit 3D hierarchical, interconnected macro- and bimodal meso-porosity (6.3 nm and <4 nm), high surface area (1383 m(2) g(-1)), and highly dispersed, semi-exposured CoOx nanoparticles (diameter of 12.5 nm). The surface doping of N, semi-exposured configuration of CoOx nanoparticles and the penetrated complementary pores (<4 nm) in the carbon walls provide highly accessibility between electroactive components and electrolytes to improve reactivity. With their tailored architecture, the Co-N-CAs show superior electrocatalytic oxygen reduction (ORR) activities comparable to the commercially Pt/C catalysts, high specific capacitance (433 F g(-1)), excellent lithium storage (938 mAh g(-1)), and outstanding durability, making them very promising for advanced energy conversion and storage. In addition, the presented strategy can be extended to fabricate other metal oxide- and N-co-doped carbon aerogels for diverse energy-related applications.

12.
Int J Biol Macromol ; 257(Pt 1): 128587, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065463

RESUMO

Biomass-based carbon aerogels hold promising application prospect in the field of supercapacitors. In this research, starch was selected as a raw material for preparing carbon aerogels. The preparation process of starch hydrogels was simplified by using KOH, which can change starch suspension into hydrogels at room temperature. Moreover, the molecular mixing of KOH and starch was realized, so that KOH can be fully utilized in the activation process. The specific surface area of the starch-based carbon aerogels prepared by this method was 1349 m2/g, and the proportion of micropores was 43.7 %. Remarkably, as electrode materials for supercapacitors, the starch-based carbon aerogels exhibited outstanding electrochemical performance. In a three-electrode system, the carbon aerogels exhibited specific capacitance of 211.5 F/g at 0.5 A/g and 138.5 F/g at 10 A/g, suggesting their suitability for high-current applications. In a symmetrical supercapacitor configuration, the materials exhibited an energy density of 11.3 Wh/kg at a power density of 0.5 kW/kg and the specific capacitance can maintain 98.91 % after 10,000 cycles. Overall, this work provides a new method for mixing activators, which will foster potential advances in starch based carbon aerogels.


Assuntos
Carbono , Hidrogéis , Biomassa , Capacitância Elétrica , Amido
13.
Adv Sci (Weinh) ; 11(26): e2401767, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713745

RESUMO

Electromagnetic (EM) metamaterials have garnered considerable attention due to their capacity to achieve negative parameters, significantly influencing the integration of natural materials with artificially structural media. The emergence of carbon aerogels (CAs) offers an opportunity to create lightweight EM metamaterials, notable for their promising EM shielding or absorption effects. This paper introduces an efficient, low-cost method for fabricating CAs without requiring stringent drying conditions. By finely tuning the ZnCl2/lignin ratio, the porosity is controlled in CAs. This control leads to an epsilon-negative response in the radio-frequency region, driven by the intrinsic plasmonic state of the 3D carbon network, as opposed to traditional periodic building blocks. This approach yields a tunable and weakly epsilon-negative response, reaching an order of magnitude of -103 under MHz frequencies. Equivalent circuit analysis highlights the inductive characteristics of CAs, correlating their significant dielectric loss at low frequencies. Additionally, EM simulations are performed to evaluate the distribution of the electric field vector in epsilon-negative CAs, showcasing their potential for effective EM shielding. The lignin-derived, lightweight CAs with their tunable epsilon-negative response hold promise for pioneering new directions in EM metamaterials and broadening their application in diverse extreme conditions.

14.
ACS Appl Mater Interfaces ; 16(13): 16712-16723, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506548

RESUMO

The fabrication of carbon aerogels with ultralow density, high electrical conductivity, and ultraelasticity still remains substantial challenges. This study utilizes electrospun polyimide aerogel as the source to fabricate flexible carbon nanofibrous aerogel (PI-CNA) capable of multifunctional applications. The lightweight PI-CNA based piezoresistive sensor shows a wide linear range (0-217 kPa), rapid response/recovery time, and fatigue resistance (12,000 cycles). More importantly, the superior pressure sensing enables the PI-CNA for all-range healthcare sensing, including pulse monitoring, physiological activity detection, speech recognition, and gait recognition. Moreover, the EMI SE and the A coefficient of the PI-CNA reach 45 dB and 0.62, respectively, indicating the outstanding absorption dominated EMI shielding effects due to the multiple reflections and absorption. Furthermore, PI-CNA exhibits satisfying Joule heating performance up to 120 °C with rapid response time (10-30 s) under low supply voltages (1.5-5 V) and possesses sufficient heating reliability and repeatability in long-term repeated heating/cooling cycles. The fabricated PI-CNA shows significant potential applications in wearable technologies, energy conversion, electronic skin, and artificial intelligence.

15.
Gels ; 10(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38534598

RESUMO

Carbonaceous materials used in most electrochemical applications require high specific surface area, adequate pore size distribution, and high electrical conductivity to ensure good interaction with the electrolyte and fast electron transport. The development of transition metal doped graphene aerogels is a possible solution, since their structure, morphology, and electrical properties can be controlled during the synthesis process. This work aims to synthesize Ni-doped graphene aerogels to study the role of different nickel salts in the sol-gel reaction and their final properties. The characterization data show that, regardless of the nature of the Ni salts, the surface area, volume of micropores, and enveloped density decrease, while the porosity and electrical conductivity increase. However, differences in morphology, mesopore size distribution, degree of order of the carbon structure, and electrical conductivity were observed depending on the type of Ni salt. It was found that nickel nitrate results in a material with a broader mesopore distribution, higher electrical conductivity, and hence, higher electrochemical surface area, demonstrating that graphene aerogels can be easily synthesized with tailored properties to fit the requirements of specific electrochemical applications.

16.
Sci Total Environ ; 931: 172803, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679107

RESUMO

Carbon aerogels were newly employed in adsorption for volatile organic compounds (VOCs) as an emerging material. In contrast, the microstructure and high carbon consumption are the primary factors restricting their application scenarios. Carbon nanotubes, recognized for their controllable cylindrical hollow structure and hydrophobic walls, generally possess higher adsorption capacities than typical carbon adsorbents. In this study, carbon nanotubes were grown on the surface of carbon aerogels using the chemical vapor deposition method by controlling different deposition conditions. The results showed that the modified samples displayed the maximum adsorption capacity of 145.0 mg/g and 178.3 mg/g for toluene and 1,2- dichlorobenzene, respectively. After ten regeneration cycles, the performance decreased by 7.9 % and 5.6 %, respectively. Meanwhile, the carbon replenishment was about 0.2 g/g, which is an excellent complement for carbon consumption. Various characterization patterns showed that deposition temperature was reflected in its deposition rate, deposition times influenced the formation of multi-walled carbon nanotubes, and deposition concentration affected the length of carbon nanotubes. This study offers valuable insight into the growth patterns of carbon nanotubes and the microscale regulation of carbon material surfaces, and this method is expected to be an effective means of carbon replenishment, carbon addition to carbon-poor materials, and enhancement of VOCs removal performance, and the growth mechanisms investigated are instructive for practical applications.

17.
Toxics ; 12(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38393240

RESUMO

1,4-dioxane is a potential carcinogen in water and is difficult to deal with due to its robust cycloether bond and complete miscibility with water. To remove 1,4-dioxane in an economically viable and environmentally friendly way, a series of carbon aerogels were synthesized as adsorbents for 1,4-dioxane. The experiment results showed that adsorption performances were closely related to the preparation conditions of carbon aerogels, such as the molar ratio, heating rate, pyrolysis temperature and residence time, which were carefully controlled. Scanning electron microscope analysis revealed the presence of a three-dimensional porous network structure in carbon aerogels. Brunauer-Emmett-Teller analysis results demonstrated an increase in specific surface area (673.89 m2/g) and total pore volume after carbonization, with an increase in mesoporous porosity and a decrease in microporosity. When considering each variable individually, the highest specific surface area of prepared carbon aerogels was achieved at a pyrolysis temperature of 800 °C, a holding time of 1 h, and a heating rate of 2 °C/min. Under optimal experimental conditions, the adsorption removal of 1,4-dioxane by carbon aerogels exceeded 95%, following quasi-second-order kinetics and Langmuir isothermal adsorption isotherms, indicating that monolayer adsorption on the surface of carbon aerogels occurred. The maximum adsorption capacity obtained was 67.28 mg/g at a temperature of 318 K, which was attributed to the presence of a large proportion of mesopores and abundant micropores simultaneously in carbon aerogels. Furthermore, with the interference of chlorinated solvents such as trichloroethylene (TCE), the removal efficiency of 1,4-dioxane had no obvious inhibition effect. Regeneration experiments showed that after five continuous cycles, the carbon aerogels still kept a comparable adsorption capacity, which illustrates its potential application in 1,4-dioxane-polluted water purification.

18.
Adv Mater ; 36(7): e2308519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37913824

RESUMO

With ultralight weight, low thermal conductivity, and extraordinary high-temperature resistance, carbon aerogels hold tremendous potential against severe thermal threats encountered by hypersonic vehicles during the in-orbit operation and re-entry process. However, current 3D aerogels are plagued by irreconcilable contradictions between adiabatic and mechanical performance due to monotonicity of the building blocks or uncontrollable assembly behavior. Herein, a spatially confined assembly strategy of multiscale low-dimensional nanocarbons is reported to decouple the stress and heat transfer. The nanofiber framework, a basis for transferring the loading strain, is covered by a continuous thin-film-like layer formed by the aggregation of nanoparticles, which in combination serve as the fundamental structural units for generating an elastic behavior while yielding compartments in aerogels to suppress the gaseous fluid thermal diffusion within distinct partitions. The resulting all-carbon aerogels with a hierarchical cellular structure and quasi-closed cell walls achieve the best thermomechanical and insulation trade-off, exhibiting flyweight density (24 mg cm-3 ), temperature-constant compressibility (-196-1600 °C), and a low thermal conductivity of 0.04 829 W m-1 K-1 at 300 °C. This strategy provides a remarkable thermal protection material in hostile environments for future aerospace exploration.

19.
J Colloid Interface Sci ; 673: 453-462, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878379

RESUMO

Single-atom catalysts (SACs), with precisely controlled metal atom distribution and adjustable coordination architecture, have gained intensive concerns as efficient oxygen reduction reaction (ORR) electrocatalysts in Zn-air batteries (ZAB). The attainment of a monodispersed state for metallic atoms anchored on the carbonaceous substrate remains the foremost research priority; however, the persistent challenges lie in the relatively weak metal-support interactions and the instability of captured single atom active sites. Furthermore, in order to achieve rapid transport of O2 and other reactive substances within the carbon matrix, manufacturing SACs based on multi-stage porous carbon substrates is highly anticipated. Here, we propose a methodology for the fabrication of carbon aerogels (CA)-supported SACs utilizing papermaking nanofibers, which incorporates advanced strategies for N-atom self-doping, defect/vacancy introduction, and single-atom interface engineering. Specifically, taking advantages of using green and energy-efficient feedstocks, combining with a direct pore-forming template volatilization and chemical vapor deposition approach, we successfully developed N-doped carbon aerogels immobilized with separated iron sites (Fe-SAC@N/CA-Cd). The obtained Fe-SAC@N/CA-Cd exhibited substantially large specific surface area (SBET = 1173 m2/g) and a multi-level pore structure, which can effectively mitigate the random aggregation of Fe atoms during pyrolysis. As a result, it demonstrated appreciable activity and stability in catalyzing the ORR progress (E1/2 = 0.88 V, Eonset = 0.96 V). Furthermore, the assembled liquid electrolyte-state Zn-air batteries (LES-ZAB) and all-solid-state Zn-air battery (ASS-ZAB) also provides encouraging performance, with a peak power density of 169 mW cm-2 for LES-ZAB and a maximum power density of 124 mW cm-2 for ASS-ZAB.

20.
ACS Appl Mater Interfaces ; 16(13): 16612-16621, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509757

RESUMO

Developing excellent electromagnetic interference (EMI) shielding materials with robust EMI shielding efficiency (SE), high mechanical performance, and multifunctionality is imperative. Carbon materials are well recognized as promising alternatives for high-performance EMI shielding, but their high brittleness greatly hampers their applications. In this work, a cellulose nanofiber/reduced graphene oxide-glucose carbon aerogel (C-CNFs/rGO-glu) with high compression, elasticity, and excellent EMI shielding performance was fabricated by directional freeze-drying followed by carbonization. Specifically, the height and stress retention are 88% and 90.9%, respectively, after 100 cycles of compression release at a high strain of 70%. The electromagnetic shielding effectiveness of the aerogels reached 67.5 dB and presented an absorption-dominant shielding mechanism with a 97.5% absorption loss ratio. Further, the carbon aerogel could capture subtle electrical signals to monitor different human behaviors and showed excellent heat insulation and infrared stealth performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa