RESUMO
The conversion of an azacalixpyridine-supported Mo(0) tricarbonyl into a Mo(VI) trioxo complex with dioxygen (O2) is investigated in homogeneous solution and in a molecular film adsorbed on Au(111) using a variety of spectroscopic and analytical methods. These studies in particular show that the dome-shaped carbonyl complex adsorbed on the metal surface has the ability to bind and activate gaseous oxygen, overcoming the so-called surface trans-effect. Furthermore, the rate of the conversion dramatically increases by irradiation with light. This observation is explained with the help of complementary DFT calculations and attributed to two different pathways, a thermal and a photochemical one. Based on the experimental and theoretical findings, a molecular mechanism for the conversion of the carbonyl to the oxo complex is derived.
RESUMO
A unique four-coordinate, classical gold(I)-carbonyl complex with substantial backdonation from gold has been isolated by using a B-methylated and fluorinated tris(pyridyl)borate chelator. Its lighter silver(I) and copper(I) analogs enabled a study of trends in the coinage-metal family. The B-arylated ligand version also afforded a gold-carbon monoxide complex that displays a notably low C-O stretch value, but with trigonal planar geometry at the gold. A computational analysis shows that the AuI -CO bonds of these tris(pyridyl)borate ligand-supported molecules consist of electrostatic attraction, OCâAu σ-donation, and very significant AuâCO π-back-bonding components. The latter is responsible for the observed C-O stretching frequencies, which are lower than in free CO.
RESUMO
Adsorption of metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining the advantages of homogeneous and heterogeneous catalysis. To avoid the "surface trans-effect" a dome-shaped molybdenum(0) tricarbonyl complex supported by an tolylazacalix[3](2,6)pyridine ligand is synthesized. This vacuum-evaporable complex both activates CO and reacts with molecular oxygen (O2) to form a Mo(VI) trioxo complex which in turn is capable of catalytically mediating oxygen transfer. The molybdenum tricarbonyl- and trioxo complexes are investigated in the solid state, in homogeneous solution and on noble metal surfaces (Cu, Au) employing a range of spectroscopic and analytical methods.
RESUMO
A mononuclear, T-shaped palladium(I) d9 metalloradical (3), stabilized by a bulky carbazole-based PNP-ligand, was obtained by reduction of palladium chloride or thermal Pd-C bond homolysis of the corresponding neopentyl complex. Pressurizing with CO gave the Pd(I) carbonyl complex, which was structurally characterized by X-ray diffraction. Delocalization of the unpaired electron to the carbonyl carbon was detected by EPR spectroscopy and theoretically modeled by DFT and ab initio methods. The partially reduced and radicalized CO slowly reacts with di(tert-butyl) disulfide under homolytic S-S cleavage and C-S bond formation to give the corresponding metallathioester.
RESUMO
The title silver(I) complex salts [Ag{Re2 (CO)10 }{Re(CO)5 }2 ]+ [Al(ORF )4 ]- (AgRe4 ; ORF =-OC(CF3 )3 ) and [Ag{Ir4 (CO)12 }2 ]+ [Al(ORF )4 ]- (AgIr8 ) form upon reaction of Ag+ [Al(ORF )4 ]- and the transition metal carbonyls (TMCs) Re2 (CO)10 and Ir4 (CO)12 respectively. The solid-state structure of the AgRe4 cluster shows an unexpected asymmetric coordination motif, wherein the silver(I) cation has inserted into the Re-Re bond of one Re2 (CO)10 moiety, while the other dirhenium carbonyl coordinates only over one metal atom towards the silver(I) cation. The AgIr8 cluster is formed by the edge-on coordination of two Ir4 tetrahedra and the silver cation in a D2 symmetric fashion with a torsion angle of 46.5°. QTAIM analysis shows bond paths between the silver atom and the nearby metal atoms in all cases, whereas only the non-inserted Re2 (CO)10 moiety shows additional bond paths between the carbonyl ligands and the silver cation. In addition, the insertion of the Ag+ cation into the Re-Re bond in Re2 (CO)10 removes the bond path between the two rhenium atoms. The EDA-NOCV analysis suggests an increase of the interaction energy between the silver(I) cation and the respective metal carbonyls from the metal centered transition metal carbonyl (TMC) donors W(CO)6
RESUMO
The stable, easily accessible salt [Ni(CO)4 ]+ [F{Al(ORF )3 }2 ]- (RF =C(CF3 )3 ) was used as a NiI synthon to generate the novel half-sandwich complexes [Ni(arene)(CO)2 ]+ (arene=C6 H6 , o-dfb=1,2-F2 C6 H4 ). By irreversible removal of CO from the equilibrium, even the rather endergonic reaction to a [Ni(o-dfb)2 ]+ salt was successful (Δr G°(solv) =+78â kJ mol-1 ). The latter displays an unprecedented slipped η3 ,η3 -sandwich structure and is the ultimate synthon to NiI -chemistry.
RESUMO
Here we present stable and crystalline chromium(I) tetracarbonyl complexes with pyridyl-MIC (MIC=mesoionic carbene) ligands and weakly coordinating anions (WCA=[Al(ORF )4 ]- , RF =C(CF3 )3 and BArF =[B(ArF )4 ]- , ArF =3,5-(CF3 )2 C6 H3 ). The complexes were fully characterized via crystallographic, spectroscopic and theoretical methods. The influence of counter anions on the IR and EPR spectroscopic properties of the CrI complexes was investigated, and the electronic innocence versus non-innocence of WCAs was probed. These are the first examples of stable and crystalline [Cr(CO)4 ]+ complexes with a chelating π - ${\pi -}$ accepting ligand, and the data presented here are of relevance for both the photochemical and the electrochemical properties of these classes of compounds.
RESUMO
One route to address climate change is converting carbon dioxide to synthetic carbon-neutral fuels. Whereas carbon dioxide to CO conversion has precedent in homo- and heterogeneous catalysis, deoxygenative coupling of CO to products with C-C bonds-as in liquid fuels-remains challenging. Here, we report coupling of two CO molecules by a diiron complex. Reduction of Fe2 (CO)2 L (2), where L2- is a bis(ß-diketiminate) cyclophane, gives [K(THF)5 ][Fe2 (CO)2 L] (3), which undergoes silylation to Fe2 (CO)(COSiMe3 )L (4). Subsequent C-OSiMe3 bond cleavage and C=C bond formation occurs upon reduction of 4, yielding Fe2 (µ-CCO)L. CO derived ligands in this series mediate weak exchange interactions with the ketenylidene affording the smallest J value, with changes to local metal ion spin states and coupling schemes (ferro- vs. antiferromagnetism) based on DFT calculations, Mössbauer and EPR spectroscopy. Finally, reaction of 5 with KEt3 BH or methanol releases the C2 O2- ligand with retention of the diiron core.
RESUMO
A complex comprising one [Re(CO)3 ]+ unit and a phthalocyanine (Pc) ligand (Re1 Pc) is shown to function as a photo-induced CO-releasing molecule (photoCORM) in the presence of O2 and a coordinative solvent under irradiation with red light, which can deeply penetrate living tissues. Transient absorption spectroscopic measurements indicate very short excited-state lifetimes and ultrafast intersystem crossing for Re1 Pc and Re2 Pc, which contains two [Re(CO)3 ]+ units. The excited-state properties are ascribed to efficient spin-orbit coupling and large Franck-Condon factors originating from the complexes' distorted structures, that is, unsymmetric coordination of [Re(CO)3 ]+ unit(s), one of which was confirmed by single-crystal X-ray analysis of a symmetrically substituted Pc with two [Re(CO)3 ]+ units. Re1 Pc represents a promising red-light-driven photoCORM that can be applied in biological environments or therapeutic applications.
Assuntos
Rênio , Indóis , Isoindóis , Ligantes , Luz , Rênio/químicaRESUMO
Carbon monoxide-releasing molecules (CORMs) can offer a safer alternative to CO delivery than the use of CO gas cylinders. Upon treatment with an amine base, S-aryl thioformates ("thioCORMates") release CO nearly quantitatively at room temperature, a gas which can then be harnessed for carbonylative cross-coupling, biological study, or inorganic synthesis. These bench-stable molecules are easily synthesized from the corresponding thiophenol and can be electronically tuned to release CO at different rates-from less than 1â min to greater than 1â h-offering a practical alternative to existing CORM technology. Finally, isotopically labeled 13 CO can be conveniently generated and used, with the thioCORMate synthesized from 13 C-formic acid.
Assuntos
Monóxido de Carbono , Compostos Organometálicos , Análise Custo-BenefícioRESUMO
Spectroscopic and computational examination of a homologous series of rhodium(I) pybox carbonyl complexes has revealed a correlation between the conformation of the flanking aryl-substituted oxazoline donors and the carbonyl stretching frequency. This relationship is also observed experimentally for octahedral rhodium(III) and ruthenium(II) variants and cannot be explained through the classical, Dewar-Chatt-Duncanson, interpretation of metal-carbonyl bonding. Instead, these findings are reconciled by local changes in the magnitude of the electric field that is projected along the metal-carbonyl vector: the internal Stark effect.
Assuntos
Ródio , Rutênio , Ligantes , Rutênio/química , Conformação Molecular , Ródio/químicaRESUMO
The open-shell iron pentacarbonyl cation [Fe(CO)5 ].+ was isolated by deelectronation, i.e., the single-electron oxidation of the parent neutral Fe(CO)5 using [phenazineF ].+ as the [Al(ORF )4 ]- and [F-{Al(ORF )3 }2 ]- salt (RF =C(CF3 )3 ; phenazineF =perfluoro-5,10-bis(perfluorophenyl)-5,10-dihydrophenazine). [Fe(CO)5 ].+ [Al(ORF )4 ]- was fully characterized (scXRD analysis, IR, NMR, EPR, 57 Fe spectroscopy, CV and SQUID magnetization study) and, apart from being a compound of fundamental interest, may serve as a precursor for low-valent iron coordination chemistry.
RESUMO
Mono- and di-nuclear tricarbonyl Re(I) tetraazaporphyrin complexes (Re1 TAP and Re2 TAP) are investigated and compared with Re(I) phthalocyanine complexes (Re1 Pc and Re2 Pc). Although Re2 Pc is unstable in polar solvents, and easily undergoes demetallation reaction, the coordination of the TAP ligand significantly improves the tolerance toward polar solvents, affording more stability to Re2 TAP. Additionally, the incorporation of [Re(CO)3 ]+ unit(s) and the TAP ligand results in remarkable positive shifts in both oxidation and reduction potentials. Consequently, the more positive oxidation potentials of the ReTAP complexes significantly increase the tolerance toward oxidation, while the reduction potential indicates that Re2 TAP is suitable for a soluble electron acceptor. In contrast to Re1 Pc and Re2 Pc, Re1 TAP and Re2 TAP show unique broad Q bands, which can be attributed to the admixture of the π-π* and metal-to-ligand charge transfer characters, owing to the lowered π orbital energy in the TAP complexes. This study is useful for controlling electronic properties and realizing high stability in Pc analogues.
Assuntos
Porfirinas , Rênio , Eletrônica , Ligantes , OxirreduçãoRESUMO
The development of NIR emitters based on earth-abundant elements is an important goal in contemporary science. We present here Cr(0), Mo(0), and W(0) carbonyl complexes with a pyridyl-mesoionic carbene (MIC) based ligand. A detailed photophysical investigation shows that all the complexes exhibit dual emissions in the VIS and in the NIR region. The emissive excited states are assigned to two distinct triplet states by time-resolved emission and step-scan FTIR spectroscopy at variable temperature, supported by density functional theory. In particular, the NIR emissive triplet state exhibits unprecedented lifetimes of up to 600±10â ns and quantum yields reaching 1.7 â 10-4 at room temperature. These are the first examples of Cr(0), Mo(0) and W(0) complexes that emit in the NIR II region.
RESUMO
The reactions of [Re(N-N)(CO)3 (PMe3 )]OTf (N-N=2,2'-bipyridine, bipy; 1,10-phenanthroline, phen) compounds with tBuLi and with LiHBEt3 have been explored. Addition to the N-N chelate took place with different site-selectivity depending on both chelate and nucleophile. Thus, with tBuLi, an unprecedented addition to C5 of bipy, a regiochemistry not accessible for free bipy, was obtained, whereas coordinated phen underwent tBuLi addition to C2 and C4. Remarkably, when LiHBEt3 reacted with [Re(bipy)(CO)3 (PMe3 )]OTf, hydride addition to the 4 and 6 positions of bipy triggered an intermolecular cyclodimerization of two dearomatized pyridyl rings. In contrast, hydride addition to the phen analog resulted in partial reduction of one pyridine ring. The resulting neutral ReI products showed a varied reactivity with HOTf and with MeOTf to yield cationic complexes. These strategies rendered access to ReI complexes containing bipy- and phen-derived chelates with several C(sp3 ) centers.
RESUMO
130â years after Mond discovered the first homoleptic carbonyl complex Ni(CO)4 , we report on a [Ni(CO)4 ].+ salt as the first synthesis of any homoleptic nickel carbonyl cation in the condensed phase. It was prepared by oxidation of nickel metal with the synergistic oxidant Ag[F{Al(ORF )3 }2 ]/0.5 I2 (RF =C(CF3 )3 ) in CO atmosphere. This D2d -symmetric metalloradical represents the last missing entry among the structurally characterized homoleptic carbonyl cations of Groupsâ 6 to 11. Additionally, the nickel tricarbonyl-nitrosyl cation [Ni(CO)3 (NO)]+ was obtained by usage of NO[F{Al(ORF )3 }2 ] and all products were fully characterized by means of IR, Raman, NMR/EPR, single crystal and powder XRD.
RESUMO
As an approach towards unraveling the nitrogenase mechanism, we have studied the binding of CO to the active-site FeMo-cofactor. CO is not only an inhibitor of nitrogenase, but it is also a substrate, undergoing reduction to hydrocarbons (Fischer-Tropsch-type chemistry). The C-C bond forming capabilities of nitrogenase suggest that multiple CO or CO-derived ligands bind to the active site. Herein, we report a crystal structure with two CO ligands coordinated to the FeMo-cofactor of the molybdenum nitrogenase at 1.33â Å resolution. In addition to the previously observed bridging CO ligand between Fe2 and Fe6 of the FeMo-cofactor, a new ligand binding mode is revealed through a second CO ligand coordinated terminally to Fe6. While the relevance of this state to nitrogenase-catalyzed reactions remains to be established, it highlights the privileged roles for Fe2 and Fe6 in ligand binding, with multiple coordination modes available depending on the ligand and reaction conditions.
Assuntos
Monóxido de Carbono/metabolismo , Nitrogenase/metabolismo , Sítios de Ligação , Monóxido de Carbono/química , Ligantes , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Nitrogenase/químicaRESUMO
The syntheses of the two novel complexes [Ag{Mo/W(CO)6 }2 ]+ [F-{Al(ORF )3 }2 ]- (RF =C(CF3 )3 ) are reported along with their structural and spectroscopic characterization. The X-ray structure shows that three carbonyl ligands from each M(CO)6 fragment bend towards the silver atom within binding Ag-C distance range. DFT calculations of the free cations [Ag{M(CO)6 }2 ]+ (M=Cr, Mo, W) in the electronic singlet state give equilibrium structures with C2 symmetry with two bridging carbonyl groups from each hexacarbonyl ligand. Similar structures with C2 symmetry (M=Nb) and D2 symmetry (M=V, Ta) are calculated for the isoelectronic groupâ 5 anions [Ag{M(CO)6 }2 ]- (M=V, Nb, Ta). The electronic structure of the cations is analyzed with the QTAIM and EDA-NOCV methods, which provide detailed information about the nature of the chemical bonds between Ag+ and the {M(CO)6 }2 q (q = -2, M = V, Nb, Ta; q = 0, M = Cr, Mo, W) ligands.
RESUMO
When carbonyl ligands coordinate to transition metals, their bond distance either increases (classical) or decreases (nonclassical) with respect to the bond length in the isolated CO molecule. C-O expansion can easily be understood by π-back-donation, which results in a population of the CO's π*-antibonding orbital and hence a weakening of its bond. Nonclassical carbonyl ligands are less straightforward to explain, and their nature is still subject of an ongoing debate. In this work, we studied five isoelectronic octahedral complexes, namely Fe(CO)6 2+ , Mn(CO)6 + , Cr(CO)6 , V(CO)6 - and Ti(CO)6 2- , at the ZORA-BLYP/TZ2P level of theory to explain this nonclassical behavior in the framework of Kohn-Sham molecular orbital theory. We show that there are two competing forces that affect the C-O bond length, namely electrostatic interactions (favoring C-O contraction) and π-back-donation (favoring C-O expansion). It is a balance between those two terms that determines whether the carbonyl is classical or nonclassical. By further decomposing the electrostatic interaction ΔVelstat into four fundamental terms, we are able to rationalize why ΔVelstat gives rise to the nonclassical behavior, leading to new insights into the driving forces behind C-O contraction.
RESUMO
The oxidation of Fe(CO)5 with the [NO]+ salt of the weakly coordinating perfluoroalkoxyaluminate anion [F-{Al(ORF )3 }2 ]- (RF =C(CF3 )3 ) leads to stable salts of the 18â valence electron (VE) species [Fe(CO)4 (NO)]+ and [Fe(CO)(NO)3 ]+ with the Enemark-Feltham numbers of {FeNO}8 and {FeNO}10 . This finally concludes the triad of heteroleptic iron carbonyl/nitrosyl complexes, since the first discovery of the anionic ([Fe(CO)3 (NO)]- ) and neutral ([Fe(CO)2 (NO)2 ]) species over 80â years ago. Both complexes were fully characterized (IR, Raman, NMR, UV/Vis, scXRD, pXRD) and are stable at room temperature under inert conditions over months and may serve as useful starting materials for further investigations.