Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Cell Physiol Biochem ; 58(3): 273-287, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38881348

RESUMO

BACKGROUND/AIMS: Inhaled particulate air pollution is associated with cardiotoxicity with underlying mechanisms including oxidative stress and inflammation. Carnosol, commonly found in rosemary and sage, is known to possess a broad range of therapeutic properties such as antioxidant, anti-inflammatory and antiapoptotic. However, its cardioprotective effects on diesel exhaust particles (DEPs)-induced toxicity have not been studied yet. Hence, we evaluated the potential ameliorative effects of carnosol on DEPs-induced heart toxicity in mice, and the underlying mechanisms involved. METHODS: Mice were intratracheally instilled with DEPs (1 mg/kg) or saline, and 1 hour prior to instillation they were given intraperitoneally either carnosol (20 mg/kg) or saline. Twenty-four hours after the DEPs instillation, multiple parameters were evaluated in the heart by enzyme-linked immunosorbent assay, colorimetric assay, Comet assay and Western blot technique. RESULTS: Carnosol has significantly reduced the elevation in the plasma levels of lactate hydrogenase and brain natriuretic peptide induced by DEPs. Likewise, the augmented cardiac levels of proinflammatory cytokines, lipid peroxidation, and total nitric oxide in DEPs-treated groups were significantly normalized with the treatment of carnosol. Moreover, carnosol has markedly reduced the heart mitochondrial dysfunction, as well as DNA damage and apoptosis of mice treated with DEPs. Similarly, carnosol significantly reduced the elevated expressions of phosphorylated nuclear factor-кB (NF-кB) and mitogen-activated protein kinases (MAPKs) in the hearts. Furthermore, the treatment with carnosol has restored the decrease in the expression of sirtuin-1 in the hearts of mice exposed to DEPs. CONCLUSION: Carnosol significantly attenuated DEP-induced cardiotoxicity in mice by suppressing inflammation, oxidative stress, DNA damage, and apoptosis, at least partly via mechanisms involving sirtuin-1 activation and the inhibition of NF-кB and MAPKs activation.


Assuntos
Abietanos , Cardiotoxicidade , NF-kappa B , Estresse Oxidativo , Emissões de Veículos , Animais , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Emissões de Veículos/toxicidade , Abietanos/farmacologia , Abietanos/uso terapêutico , Masculino , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/patologia , Estresse Nitrosativo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Sirtuína 1/metabolismo , Sirtuína 1/genética , Dano ao DNA/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 729: 150343, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38986259

RESUMO

Pathological cardiac hypertrophy is associated with adverse cardiovascular events and can gradually lead to heart failure, arrhythmia, and even sudden death. However, the current development of treatment strategies has been unsatisfactory. Therefore, it is of great significance to find new and effective drugs for the treatment of myocardial hypertrophy. We found that carnosol can inhibit myocardial hypertrophy induced by PE stimulation, and the effect is very significant at 5 µM. Moreover, we demonstrated that 50 mg/kg of carnosol protect against cardiac hypertrophy and fibrosis induced by TAC surgery in mice. Mechanically, we proved that the inhibitory effect of carnosol on cardiac hypertrophy depends on its regulation on the phosphorylation activation of AMPK. In conclusion, our study suggested that carnosol may be a novel drug component for the treatment of pathological cardiac hypertrophy.

3.
Phytother Res ; 38(5): 2182-2197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38414287

RESUMO

Excessive reactive oxygen species production during acute lung injury (ALI) will aggravate the inflammatory process and endothelial barrier dysfunction. Carnosol is a natural phenolic diterpene with antioxidant and anti-inflammatory properties, but its role in treating sepsis-induced ALI remains unclear. This study aims to explore the protective effects and underlying mechanisms of carnosol in sepsis-induced ALI. C57BL/6 mouse were preconditioned with carnosol for 1 h, then the model of lipopolysaccharide (LPS)-induced sepsis was established. The degree of pulmonary edema, oxidative stress, and inflammation were detected. Endothelial barrier function was evaluated by apoptosis and cell junctions. In vitro, Mito Tracker Green probe, JC-1 staining, and MitoSOX staining were conducted to investigate the effect of carnosol on mitochondria. Finally, we investigated the role of nuclear factor-erythroid 2-related factor (Nrf2)/sirtuin-3 (SIRT3) in carnosol against ALI. Carnosol alleviated LPS-induced pulmonary oxidative stress and inflammation by inhibiting excess mitochondrial reactive oxygen species production and maintaining mitochondrial homeostasis. Furthermore, carnosol also attenuated LPS-induced endothelial cell barrier damage by reducing vascular endothelial cell apoptosis and restoring occludin, ZO-1, and vascular endothelial-Cadherin expression in vitro and in vivo. In addition, carnosol increased Nrf2 nuclear translocation to promote SIRT3 expression. The protective effects of carnosol on ALI were largely abolished by inhibition of Nrf2/SIRT3. Our study has provided the first evidence that the Nrf2/SIRT3 pathway is a protective target of the endothelial barrier in ALI, and carnosol can serve as a potential therapeutic candidate for ALI by utilizing its ability to target this pathway.


Assuntos
Abietanos , Lesão Pulmonar Aguda , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sepse , Transdução de Sinais , Animais , Masculino , Camundongos , Abietanos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Antígenos CD , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo
4.
Phytother Res ; 38(7): 3763-3781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831669

RESUMO

Cardiac remodeling is a commonly observed pathophysiological phenomenon associated with the progression of heart failure in various cardiovascular disorders. Carnosol, a phenolic compound extracted from rosemary, possesses noteworthy pharmacological properties including anti-inflammatory, antioxidant, and anti-apoptotic activities. Considering the pivotal involvement of inflammation, oxidative stress, and apoptosis in cardiac remodeling, the present study aims to assess the effects of carnosol on cardiac remodeling and elucidate the underlying mechanisms. In an in vivo model, cardiac remodeling was induced by performing transverse aortic constriction (TAC) surgery on mice, while an in vitro model was established by treating neonatal rat cardiomyocytes (NRCMs) with Ang II. Our results revealed that carnosol treatment effectively ameliorated TAC-induced myocardial hypertrophy and fibrosis, thereby attenuating cardiac dysfunction in mice. Moreover, carnosol improved cardiac electrical remodeling and restored connexin 43 expression, thereby reducing the vulnerability to ventricular fibrillation (VF). Furthermore, carnosol significantly reduced Ang II-induced cardiomyocyte hypertrophy in NRCMs and alleviated the upregulation of hypertrophy and fibrosis markers. Both in vivo and in vitro models of cardiac remodeling exhibited the anti-inflammatory, anti-oxidative, and anti-apoptotic effects of carnosol. Mechanistically, these effects were mediated through the Sirt1/PI3K/AKT pathway, as the protective effects of carnosol were abrogated upon inhibition of Sirt1 or activation of the PI3K/AKT pathway. In summary, our study suggests that carnosol prevents cardiac structural and electrical remodeling by regulating the anti-inflammatory, anti-oxidative, and anti-apoptotic effects mediated by Sirt1/PI3K/AKT signaling pathways, thereby alleviating heart failure and VF.


Assuntos
Abietanos , Insuficiência Cardíaca , Miócitos Cardíacos , Remodelação Ventricular , Animais , Camundongos , Remodelação Ventricular/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Abietanos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Ratos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Fibrose , Sirtuína 1/metabolismo , Ratos Sprague-Dawley , Angiotensina II , Cardiomegalia/tratamento farmacológico
5.
Molecules ; 29(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338370

RESUMO

The objective of this study was the optimization of the extraction process and the qualitative and quantitative determination of the bioactive metabolites: 12-O-methylcarnosic acid (12MCA), carnosic acid (CA), carnosol (CS), 7-O-methyl-epi-rosmanol (7MER) and rosmanol (RO) in infusions, decoctions, turbulent flow extracts, tinctures and oleolites from three Salvia species: Salvia officinalis L. (common sage, SO), Salvia fruticosa Mill. (Greek sage, SF) and Salvia rosmarinus Spenn (syn Rosmarinus officinalis L.) (rosemary, SR), using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy (1H-qNMR). Regarding the aqueous extracts, decoctions appeared to be richer sources of the studied metabolites than infusions among the three plants. For SR, the turbulent flow extraction under heating was the most efficient one. The optimum time for the preparation of decoctions was found to be 5 min for SF and SO and 15 min for SR. It is noteworthy that SR tinctures were not stable in time due to decomposition of the abietane-type diterpenes CA and CS because of the polar solvent used for their preparation. Contrary to this finding, the oleolites of SR appeared to be very stable. Olive oil as a solvent for extraction was very protective for the contained abietane-type diterpenes. A preliminary stability study on the effect of the storage time of the SF on the abietane-type diterpenes content showed that the total quantity of abietanes decreased by 16.51% and 40.79% after 12 and 36 months, respectively. The results of this investigation also demonstrated that 1H-qNMR is very useful for the analysis of sensitive metabolites, like abietane-type diterpenes, that can be influenced by solvents used in chromatographic analysis.


Assuntos
Diterpenos , Rosmarinus , Salvia , Abietanos/química , Rosmarinus/química , Salvia/química , Grécia , Extratos Vegetais/química , Solventes , Diterpenos/análise
6.
Toxicol Appl Pharmacol ; 479: 116729, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37863360

RESUMO

Cancer cachexia is a systemic metabolic disorder syndrome characterized by severe wasting of muscle and adipose tissues while is lack of effective therapeutic approaches. Carnosol (CS) was found in our previous study to exhibit ameliorating effects on cancer cachexia. In the present study, we designed and synthesized 49 CS analogues by structural modification of CS. Results of activity screening revealed that, among the analogues, WK-63 exhibited better effects than CS in ameliorating atrophy of C2C12 myotubes induced by conditioned medium of C26 tumor cells. WK-63 could also dose-dependently alleviate adipocyte lipolysis of mature 3 T3-L1 cells induced by C26 tumor cell conditioned medium. WK-63 alleviated myotube atrophy by inhibiting Nuclear Factor kappa-B (NF-κB) and activating the Protein Kinase B (AKT) signaling pathway, and also alleviated fat loss by inhibiting NF-κB and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways. Results of pharmacokinetic (PK) assay showed that, compared with other analogues, WK-63 exhibited longer half-life (T1/2) and mean residence time (MRTs), as well as a larger concentration curve area (AUC0-t). These findings suggested that WK-63 might exert optimal effects in vivo. In the C26 tumor-bearing mice model, administration of WK-63 ameliorated the body weight loss and also improved the weight loss of epididymal adipose tissue. WK-63 is expected to be a novel therapeutic option for the treatment of cancer cachexia.


Assuntos
NF-kappa B , Neoplasias , Camundongos , Animais , NF-kappa B/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Neoplasias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia/patologia , Adipócitos/metabolismo , Músculo Esquelético , Atrofia Muscular/tratamento farmacológico
7.
Phytother Res ; 37(4): 1405-1421, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786429

RESUMO

Excessive oxidative stress and apoptosis of ovarian granulosa cells lead to abnormal follicular development and ovulation disorders in polycystic ovary syndrome (PCOS). Carnosol is a plant-derived polyphenol that has been proven to exhibit several cell protective effects. In this study, we established hyperandrogenic PCOS models both in vitro and in vivo. In the human ovarian granulosa cell line, KGN cells, decreased viability and mitochondrial membrane potential, and upregulated reactive oxygen species (ROS) level and apoptosis induced by DHT were partly reversed by carnosol. Western blotting results showed that carnosol treatment inhibited the DHT-activated mitochondrial apoptotic pathway by activating nuclear factor-erythroid 2-related factor (Nrf2)/heme oxygenase 1 (HO-1). Knockdown of Nrf2 by transfecting with siRNA or inhibiting HO-1 by zinc protoporphyrin (ZnPP) blocked the protective effects of carnosol. Computational modeling and pull-down assay results confirmed the direct binding of carnosol to kelch-like ECH-associated protein 1 (Keap1). In vivo results showed that the intraperitoneal administration of carnosol (50 and 100 mg/kg) improved estrous cycle disorders, polycystic ovary, and decreased elevated androgen in the PCOS mice. In summary, Carnosol has an effective role in inhibiting oxidative stress and apoptosis in DHT-treated KGN cells and protecting against mouse PCOS phenotypes through the Keap1-mediated activation of Nrf2/HO-1 signaling.


Assuntos
Síndrome do Ovário Policístico , Feminino , Camundongos , Humanos , Animais , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Apoptose
8.
Chem Biodivers ; 20(2): e202200733, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36562957

RESUMO

Lepechinia meyenii is a medicinal plant specialized in the biosynthesis of different types of antioxidants including the diterpenes carnosic (CA) acid and carnosol (CS). Herein we present the results of plant tissue culture approaches performed in this medicinal plant with particular emphasis on the generation and evaluation of a cell suspension system for CA and CS production. The effect of sucrose concentration, temperature, pH, and UV-light exposure was explored. In addition, diverse concentrations of microbial elicitors (salicylic acid, pyocyanin, Glucanex, and chitin), simulators of abiotic elicitors (polyethylene glycol and NaCl), and biosynthetic precursors (mevalonolactone, geranylgeraniol, and miltiradiene/abietatriene) were evaluated on batch cultures for 20 days. Miltiradiene/abietatriene obtainment was achieved through a metabolic engineering approach using a recombinant strain of Saccharomyces cerevisiae. Our results suggested that the maximum accumulation (Accmax ) of CA and CS was mainly conferred to stimuli associated with oxidative stress such as UV-light exposure (Accmax , 6.2 mg L-1 ) polyethylene glycol (Accmax , 6.5 mg L-1 ) NaCl (Accmax , 5.9 mg L-1 ) which simulated drought and saline stress, respectively. Nevertheless the bacterial elicitor pyocyanin was also effective to increase the production of both diterpenes (Accmax , 6.4 mg L-1 ). Outstandingly, the incorporation of upstream biosynthetic precursors such as geranylgeraniol and miltiradiene/abietatriene, generated the best results with Accmax of 8.6 and 16.7 mg L-1 , respectively. Optimized batch cultures containing 100 mg L-1 geranylgeraniol, 50 mg L-1 miltiradiene/abietatriene (95 : 5 %) and 5 g L-1 polyethylene glycol treated with 6 min UV light pulse during 30 days resulted in Accmax of 26.7 mg L-1 for CA and 17.3 mg L-1 for CS on days 18-24. This strategy allowed to increase seven folds the amounts of CA and CS in comparison with batch cultures without elicitation (Accmax , 4.3 mg L-1 ).


Assuntos
Diterpenos , Lamiaceae , Plantas Medicinais , Piocianina , Cloreto de Sódio , Suspensões , Diterpenos/metabolismo , Lamiaceae/metabolismo , Plantas Medicinais/metabolismo
9.
J Asian Nat Prod Res ; 25(8): 783-795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36300534

RESUMO

Carnosol is a natural compound with antioxidant properties. Based on this evidence, in the present study we investigated whether this compound can protect retinal vascular endothelium from hyperglycemic insult responsible for diabetic retinopathy development. We performed in vitro study on human retinal endothelial cells (HREC) cultured both in normal and high glucose conditions to assess the effects of carnosol on cell viability, Nrf2 expression, HO-1 activity, and ERK1/2 expression. HREC exposed to high glucose insult were treated with carnosol. Data indicated that carnosol treatment is able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by high glucose. Further, carnosol activation of Nrf2/HO-1 signaling axis involves ERK1/2 pathway. These data confirm the therapeutic value of carnosol by suggesting its use to treat diabetic retinopathy.

10.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764477

RESUMO

The diphenolic diterpene carnosol was isolated from several species of the family Lamiaceae, including Lepechinia mutica, a medicinal plant endemic to Ecuador. The compound has exhibited high antioxidant, anti-inflammatory, antimicrobial, neuroprotective, and antifungal properties, as well as promising cytotoxicity against prostate, breast, skin, leukemia, and human colon cancer cell lines. In this paper, we developed and validated a simple, accurate, and reliable analytical HPLC-UV-ESI-IT-MS method, carried out on a C18 column, which is potentially suitable to quantify carnosol in plant extracts. The procedure complied with the established ICH validation parameters of analytical range (linearity in the range of 0.19-5.64 µg/g dried leaves; REAVERGE = 4.9%; R2 = 0.99907), analysis repeatability (RSD = 2.8-3.6%), intermediate precision (RSD = 1.9-3.6%), accuracy (estimated as % carnosol recovery in the range of 81 to 108%), and robustness. Finally, the LOD (0.04 µg/mg) and LOQ (0.19 µg/mg) values of carnosol/dried leaves were determined. Using this validated method, the content of carnosol in L. mutica was estimated to be 0.81 ± 0.04 mg/g of dried leaves (0.081%).

11.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630345

RESUMO

The aim of the study was to examine the effect of ultrasonic maceration (U) on the extraction of carnosic acid (CA) and its derivative-carnosol (C)-directly from sage into fish oil, compared to homogenization-assisted maceration (H). It was shown that the ultrasonic maceration process (U) allowed for obtaining a macerate enriched in carnosic acid (CA) and carnosol (C), also containing rosmarinic acid (RA), total polyphenols, and plant pigments, and showing antioxidant properties (DPPH test). There was no unequivocal difference in the efficiency of extracting ingredients from sage into the oil macerate between U and H, with the use of ultrasound in most cases resulting in a greater extraction of C and less extraction of pigments from sage into the macerate than in H. The highest simultaneous contents of CA (147.5 mg/100 g) and C (42.7 mg/100 g) in the macerate were obtained after 60 min of maceration U when using a higher power (320 W). The amount of determined compounds also depended on the concentration of methanol (methanol; 70% methanol) used for the analysis. The maceration U is a simple, safe, "green method" of obtaining active substances, with a reduced number of steps, enabling an interesting application form of CA and C, e.g., for food or cosmetics.


Assuntos
Salvia officinalis , Óleos de Peixe , Metanol , Mudanças Depois da Morte
12.
Immunopharmacol Immunotoxicol ; 44(5): 656-662, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35521965

RESUMO

Context: Ischemic stroke is the most common type of acute cerebrovascular disease. Carnosol is a polyphenol compound extracted from rosemary.Objective: This study aimed to explore the effects of carnosol on the oxygen-glucose deprivation (OGD) treated BV2 microglia cells.Materials and methods: MTT and EdU assays were used to detect the cell viability and proliferation. Flow cytometry was conducted to measure the apoptosis rates. Additionally, the protein expression was determined by western blot. The inflammatory factors and antioxidant indexes were detected by corresponding kits.Results and discussion: Carnosol promoted the proliferation and inhibited the apoptosis of the OGD treated BV2 cells. What's more, the protein expressions of PCNA and Bcl-2 were up-regulated, the Bax expression was down-regulated after carnosol treatment. In addition, carnosol decreased the levels of MDA, LPO, TNF-α, IL-1ß and IL-6, and increased the levels of GSH, SOD, IL-4 and IL-10 in the OGD treated BV2 cells. Furthermore, the PI3K/AKT/mTOR signaling pathway was activated after carnosol treatment and inhibition of the PI3K/AKT/mTOR signaling pathway reversed the carnosol effects.Conclusions: Carnosol promotes the proliferation, inhibits the apoptosis, relieves the oxidative damage and inflammation of OGD treated cells through regulating the PI3K/AKT/mTOR signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Abietanos , Antioxidantes/farmacologia , Apoptose , Glucose/metabolismo , Glucose/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Antígeno Nuclear de Célula em Proliferação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Drug Dev Res ; 83(6): 1342-1350, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781309

RESUMO

Postoperative Cognitive Dysfunction (POCD) is a neurological disorder of unconsciousness due to cognitive regression after surgical anesthesia. However, the specific mechanism has not yet been clarified. Sevoflurane (SEV) is one of the most commonly used anesthetics in clinical practice, and how SEV mediates the generation of POCD is unclear. Carnosol, a natural ingredient, has been reported to have various beneficial effects such as anti-inflammatory, immune enhancement, and so forth, but how it ameliorates SEV-mediated neurotoxicity remains unclear. This study aimed to induce a POCD model in aged rats by SEV and to elucidate how Carnosol ameliorated SEV-mediated neurotoxicity. The effects of Carnosol on the expression of inflammatory factors in rat hippocampus mediated by SEV were determined by enzyme-linked immunoassay and polymerase chain reaction experiments; the effects of Carnosol on the expressions of Iba-1 and glial fibrillary acidic protein after SEV-mediated activation of rat microglia were clarified by immunofluorescence and Western blotting (WB); The effects of Carnosol on SEV-mediated neuronal apoptosis were studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and WB; the specific signaling pathways regulated by Carnosol were elucidated by WB. The results showed that Carnosol can improve the cognitive dysfunction and reduce neuroinflammation in aged rats induced by SEV; Carnosol can reduce the activation of microglia and inhibit neuronal apoptosis in aged rats induced by SEV; Carnosol can phosphorylate p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha regulates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Carnosol can attenuate SEV-induced neuroinflammation, prevent microglial activation and inhibit neuronal apoptosis by modulating the NF-κB pathway.


Assuntos
Disfunção Cognitiva , NF-kappa B , Abietanos , Animais , Apoptose , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Sevoflurano/farmacologia
14.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163873

RESUMO

This systematic review aimed to evaluate the potential anti-inflammatory effect of Rosmarinus officinalis in preclinical in vivo models of inflammation. A search was conducted in the databases PubMed, Scopus, and Web of Science, with related keywords. The inclusion criteria were inflammation, plant, and studies on rats or mice; while, the exclusion criteria were reviews, studies with in vitro models, and associated plants. The predominant animal models were paw edema, acute liver injury, and asthma. Rosemary was more commonly used in its entirety than in compounds, and the prevalent methods of extraction were maceration and hydrodistillation. The most common routes of administration reported were gavage, intraperitoneal, and oral, on a route-dependent dosage. Treatment took place daily, or was single-dose, on average for 21 days, and it more often started before the induction. The most evaluated biomarkers were tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-10, myeloperoxidase (MPO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA), and superoxide dismutase (SOD). The best results emerged at a dose of 60 mg/kg, via IP of carnosic acid, a dose of 400 mg/kg via gavage of Rosmarinus officinalis, and a dose of 10 mg/kg via IP of rosmarinic acid. Rosmarinus officinalis L. showed anti-inflammatory activity before and after induction of treatments.


Assuntos
Anti-Inflamatórios/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inflamação/tratamento farmacológico , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Rosmarinus/química , Animais
15.
J Cell Physiol ; 236(3): 1950-1966, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32722851

RESUMO

Osteolysis is a common medical condition characterized by excessive activity of osteoclasts and bone resorption, leading to severe poor quality of life. It is essential to identify the medications that can effectively suppress the excessive differentiation and function of osteoclasts to prevent and reduce the osteolytic conditions. It has been reported that Carnosol (Car), isolated from rosemary and salvia, has anti-inflammatory, antioxidative, and anticancer effects, but its activity on osteolysis has not been determined. In this study, we found that Car has a strong inhibitory effect on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation dose-dependently without any observable cytotoxicity. Moreover, Car can inhibit the RANKL-induced osteoclastogenesis and resorptive function via suppressing NFATc1, which is a result of affecting MAPK, NF-κB and Ca2+ signaling pathways. Moreover, the particle-induced osteolysis mouse model confirmed that Car could be effective for the treatment of bone loss in vivo. Taken together, by suppressing the formation and function of RANKL-induced osteoclast, Car, may be a therapeutic supplementary in the prevention or the treatment of osteolysis.


Assuntos
Abietanos/uso terapêutico , Osteogênese , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Ligante RANK/farmacologia , Titânio/efeitos adversos , Abietanos/farmacologia , Animais , Reabsorção Óssea/complicações , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteólise/genética , Osteólise/patologia , Proteólise/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/patologia
16.
Toxicol Appl Pharmacol ; 431: 115729, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592323

RESUMO

Rosemary (Salvia Rosmarinus) is a rich source of dietary diterpenes with carnosol as one of the major polyphenols used to standardize rosemary extracts approved as a food preservative, however, at present there is not any information on the murine pharmacokinetic profile of carnosol or its potential for drug interactions. The present study utilizes cell-free, cell-based, and animal-based experiments to define the pharmacokinetic profile of the food based phytochemical carnosol. Mice were administered carnosol (100 mg/kg body weight) by oral gavage and plasma levels were analyzed by LC-MS/MS to establish a detailed pharmacokinetic profile. The maximum plasma concentration exceeded 1 µM after a single administration. The results are significant as they offer insights on the potential for food-drug interactions between carnosol from rosemary and active pharmaceutical ingredients. Carnosol was observed to inhibit selected CYP450 enzymes and modulate metabolic enzymes and transporters in in vitro assays.


Assuntos
Abietanos/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Conservantes de Alimentos/farmacocinética , Abietanos/administração & dosagem , Abietanos/sangue , Abietanos/isolamento & purificação , Administração Oral , Animais , Disponibilidade Biológica , Óleo de Sementes de Algodão/química , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Inibidores das Enzimas do Citocromo P-450/sangue , Inibidores das Enzimas do Citocromo P-450/isolamento & purificação , Estabilidade de Medicamentos , Conservantes de Alimentos/administração & dosagem , Conservantes de Alimentos/isolamento & purificação , Células HT29 , Células Hep G2 , Humanos , Isoenzimas , Masculino , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Rosmarinus/química , Temperatura
17.
Toxicol Appl Pharmacol ; 432: 115758, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678374

RESUMO

Mitochondrial dysfunction is a major factor in nonalcoholic fatty liver disease (NAFLD), preceding insulin resistance and hepatic steatosis. Carnosol (CAR) is a kind of diterpenoid with antioxidant, anti-inflammatory and antitumor activities. Peroxiredoxin 3 (PRDX3), a mitochondrial H2O2-eliminating enzyme, undergoes overoxidation and subsequent inactivation under oxidative stress. The purpose of this study was to investigate the protective effect of the natural phenolic compound CAR on NAFLD via PRDX3. Mice fed a high-fat diet (HFD) and AML-12 cells treated with palmitic acid (PA) were used to detect the molecular mechanism of CAR in NAFLD. We found that pharmacological treatment with CAR notably moderated HFD- and PA- induced steatosis and liver injury, as shown by biochemical assays, Oil Red O and Nile Red staining. Further mechanistic investigations revealed that CAR exerted anti-NAFLD effects by inhibiting mitochondrial oxidative stress, perturbation of mitochondrial dynamics, and apoptosis in vivo and in vitro. The decreased protein and mRNA levels of PRDX3 were accompanied by intense oxidative stress after PA intervention. Interestingly, CAR specifically bound PRDX3, as shown by molecular docking assays, and increased the expression of PRDX3. However, the hepatoprotection of CAR in NAFLD was largely abolished by specific PRDX3 siRNA, which increased mitochondrial dysfunction and exacerbated apoptosis in vitro. In conclusion, CAR suppressed lipid accumulation, mitochondrial dysfunction and hepatocyte apoptosis by activating PRDX3, mitigating the progression of NAFLD, and thus, CAR may represent a promising candidate for clinical treatment of steatosis.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Peroxirredoxina III/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática , Hepatócitos/enzimologia , Hepatócitos/patologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/toxicidade , Peroxirredoxina III/genética
18.
Regul Toxicol Pharmacol ; 120: 104840, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33321148

RESUMO

In 2017, JECFA requested reproductive and developmental toxicity studies to finalize an acceptable daily intake for solvent rosemary extracts. Thus, an OECD 421 reproductive/developmental toxicity study was conducted using an acetone rosemary extract that complied with JECFA and EFSA food additive specifications. Rosemary extract was provided to rats at dietary concentrations of 0 (control), 2100, 3600, or 5000 mg/kg, for 14 days before mating, during mating, and thereafter (throughout gestation and up to Lactation Day 13 for females) until necropsy. General toxicity (clinical signs, body weight, food consumption) and reproductive/developmental outcomes (fertility and mating performance, estrous cycles, anogenital distance, thyroid hormones, reproductive organ weights, thyroid histopathology) were assessed. There were no signs of general toxicity and no effects on reproduction; thus, the highest concentration tested (equivalent to mean daily intakes of 316 or 401 mg/kg bw/day [149 or 189 mg/kg bw/day carnosol and carnosic acid] for males and females, respectively) was established as the no-observed-adverse-effect level for general and reproductive toxicity. Dose-related reductions in T4 were observed for Day 13 pups (not seen on Day 4) but were not accompanied by thyroid weight changes or histopathological findings; further investigations are required to determine the biological relevance of these T4 reductions.


Assuntos
Acetona/toxicidade , Genitália/efeitos dos fármacos , Extratos Vegetais/toxicidade , Reprodução/efeitos dos fármacos , Rosmarinus , Animais , Animais Recém-Nascidos , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Genitália/fisiologia , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão , Extratos Vegetais/isolamento & purificação , Gravidez , Ratos , Reprodução/fisiologia
19.
Regul Toxicol Pharmacol ; 119: 104826, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33221424

RESUMO

Toxicology studies conducted with oil-soluble rosemary extracts to support authorization as a food additive (antioxidant) in the EU include an Ames test using a supercritical carbon dioxide extract (D74), a full 90-day study using D74 and an acetone extract (F62), and an investigative 90-day study with a 28-day recovery period (using D74 only). D74 was non-mutagenic in the Ames test. In the full 90-day study, where rats (20/sex/group) were either provided control diet or diets containing D74 (300, 600, or 2400 mg/kg) or F62 (3800 mg/kg), liver enlargement and hepatocellular hypertrophy were observed. To determine a mode of action and assess the reversibility of the hepatic effects, an investigative 90-day study was conducted using female rats (10/group receiving control diet or diet containing 2400 mg/kg D74). Liver enlargement was fully reversible after 28 days and microsomal enzyme analysis revealed reversible induction of cytochrome P450 enzymes (CYP2A1, CYP2A2, CYP2C11, CYP2E1, and CYP4A), demonstrating that the hepatic effects were adaptive and of no toxicological concern. Therefore, the highest dietary concentrations were established as the NOAELs. The investigative 90-day study NOAEL (providing 64 mg/kg bw/day carnosol and carnosic acid [the primary antioxidant components]) was used to establish a temporary ADI for rosemary extracts.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado/efeitos dos fármacos , Extratos Vegetais/toxicidade , Rosmarinus , Acetona/química , Animais , Dióxido de Carbono/química , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta , Feminino , Fígado/patologia , Masculino , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Ratos , Solventes/química , Testes de Toxicidade Subcrônica
20.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919842

RESUMO

Carnosic acid (CA), carnosol (CL) and rosmarinic acid (RA), components of the herb rosemary, reportedly exert favorable metabolic actions. This study showed that both CA and CL, but not RA, induce significant phosphorylation of AMP-dependent kinase (AMPK) and its downstream acetyl-CoA carboxylase 1 (ACC1) in HepG2 hepatoma cells. Glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), rate-limiting enzymes of hepatic gluconeogenesis, are upregulated by forskolin stimulation, and this upregulation was suppressed when incubated with CA or CL. Similarly, a forskolin-induced increase in CRE transcriptional activity involved in G6PC and PCK1 regulations was also stymied when incubated with CA or CL. In addition, mRNA levels of ACC1, fatty acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP-1c) were significantly reduced when incubated with CA or CL. Finally, it was shown that CA and CL suppressed cell proliferation and reduced cell viability, possibly as a result of AMPK activation. These findings raise the possibility that CA and CL exert a protective effect against diabetes and fatty liver disease, as well as subsequent cases of hepatoma.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Abietanos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/genética , Lipogênese/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Gluconeogênese/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Lipogênese/efeitos dos fármacos , Camundongos , Oxirredução , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rosmarinus/química , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa