RESUMO
Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.
Assuntos
Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Feminino , Fibroblastos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos TransgênicosRESUMO
The antiquity of human dispersal into Mediterranean islands and ensuing coastal adaptation have remained largely unexplored due to the prevailing assumption that the sea was a barrier to movement and that islands were hostile environments to early hunter-gatherers [J. F. Cherry, T. P. Leppard, J. Isl. Coast. Archaeol. 13, 191-205 (2018), 10.1080/15564894.2016.1276489]. Using the latest archaeological data, hindcasted climate projections, and age-structured demographic models, we demonstrate evidence for early arrival (14,257 to 13,182 calendar years ago) to Cyprus and predicted that large groups of people (~1,000 to 1,375) arrived in 2 to 3 main events occurring within <100 y to ensure low extinction risk. These results indicate that the postglacial settlement of Cyprus involved only a few large-scale, organized events requiring advanced watercraft technology. Our spatially debiased and Signor-Lipps-corrected estimates indicate rapid settlement of the island within <200 y, and expansion to a median of 4,000 to 5,000 people (0.36 to 0.46 km-2) in <11 human generations (<300 y). Our results do not support the hypothesis of inaccessible and inhospitable islands in the Mediterranean for pre-agropastoralists, agreeing with analogous conclusions for other parts of the world [M. I. Bird et al., Sci. Rep. 9, 8220 (2019), 10.1038/s41598-019-42946-9]. Our results also highlight the need to revisit these questions in the Mediterranean and test their validity with new technologies, field methods, and data. By applying stochastic models to the Mediterranean region, we can place Cyprus and large islands in general as attractive and favorable destinations for paleolithic peoples.
Assuntos
Arqueologia , Humanos , Chipre , Arqueologia/métodos , História Antiga , Migração Humana/história , Demografia/métodosRESUMO
BACKGROUND: Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. RESULTS: To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. CONCLUSIONS: gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
Assuntos
Software , Biologia Computacional/métodos , Análise de DadosRESUMO
Global change is rapidly and fundamentally altering many of the processes regulating the flux of energy throughout ecosystems, and although researchers now understand the effect of temperature on key rates (such as aquatic primary productivity), the theoretical foundation needed to generate forecasts of biomass dynamics and extinction risk remains underdeveloped. We develop new theory that describes the interconnected effects of nutrients and temperature on phytoplankton populations and show that the thermal response of equilibrium biomass (i.e. carrying capacity) always peaks at a lower temperature than for productivity (i.e. growth rate). This mismatch is driven by differences in the thermal responses of growth, death, and per-capita impact on the nutrient pool, making our results highly general and applicable to widely used population models beyond phytoplankton. We further show that non-equilibrium dynamics depend on the pace of environmental change relative to underlying vital rates and that populations respond to variable environments differently at high versus low temperatures due to thermal asymmetries.
Assuntos
Ecossistema , Fitoplâncton , Temperatura , Biomassa , Dinâmica Populacional , NutrientesRESUMO
The hypothesized main drivers of megafauna extinctions in the late Quaternary have wavered between over-exploitation by humans and environmental change, with recent investigations demonstrating more nuanced synergies between these drivers depending on taxon, spatial scale, and region. However, most studies still rely on comparing archaeologically based chronologies of timing of initial human arrival into naïve ecosystems and palaeontologically inferred dates of megafauna extinctions. Conclusions arising from comparing chronologies also depend on the reliability of dated evidence, dating uncertainties, and correcting for the low probability of preservation (Signor-Lipps effect). While some models have been developed to test the susceptibility of megafauna to theoretical offtake rates, none has explicitly linked human energetic needs, prey choice, and hunting efficiency to examine the plausibility of human-driven extinctions. Using the island of Cyprus in the terminal Pleistocene as an ideal test case because of its late human settlement (~14.2-13.2 ka), small area (~11 000 km2), and low megafauna diversity (2 species), we developed stochastic models of megafauna population dynamics, with offtake dictated by human energetic requirements, prey choice, and hunting-efficiency functions to test whether the human population at the end of the Pleistocene could have caused the extinction of dwarf hippopotamus (Phanourios minor) and dwarf elephants (Palaeoloxodon cypriotes). Our models reveal not only that the estimated human population sizes (n = 3000-7000) in Late Pleistocene Cyprus could have easily driven both species to extinction within < 1000 years, the model predictions match the observed, Signor-Lipps-corrected chronological sequence of megafauna extinctions inferred from the palaeontological record (P. minor at ~12-11.1 ka, followed by P. cypriotes at ~10.3-9.1 ka).
Assuntos
Extinção Biológica , Animais , Humanos , Chipre , Caça , Fósseis , PaleontologiaRESUMO
Multi-type birth-death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth-death models is that they require restrictive linearity assumptions that yield tractable message-passing likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes - such as environmental carrying capacity or frequency-dependent selection - entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth-death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble's stochastically evolving interaction field converges to a deterministic trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is rich enough to model both carrying capacity and frequency-dependent selection while yielding tractable message-passing likelihoods in the context of a phylogenetic birth-death model.
Assuntos
Filogenia , Evolução Biológica , Processos EstocásticosRESUMO
The human spleen acts as a reservoir for red blood cells, which is mobilized into the systemic circulation during various conditions such as hypoxia and physical exertion. Cross-country (XC) skiers, renowned for their exceptional aerobic capacity, are regularly exposed to high-intensity exercise and local oxygen deficits. We investigated a putative dose-dependent relationship between splenic contraction and concomitant hemoglobin concentration ([Hb]) elevation across four exercise intensities in well-trained XC skiers. Fourteen male XC skiers voluntarily participated in a 2-day protocol, encompassing a serial apnea test and a V Ë O2max test (day 1), followed by three submaximal exercise intensities on a roller skiing treadmill corresponding to 55, 70, and 85% of V Ë O2max (day 2). Spleen volume was measured via ultrasonic imaging, and venous blood samples were used to determine [Hb] levels. Baseline spleen volume was similar (266(35) mL) for all conditions (NS). Notably, all conditions induced significant splenic contractions and transient [Hb] elevations. The V Ë O2max test exhibited the most pronounced splenic contraction (35.8%, p < 0.001) and a [Hb] increase of 8.1%, while the 85% exercise intensity led to 27.1% contraction and the greatest [Hb] increase (8.3%, < 0.001) compared to baseline. The apnea test induced relatively smaller responses (splenic contraction: 20.4%, [Hb] = 3.3%, p < 0.001), akin to the response observed at the 70% exercise intensity (splenic contraction = 23%, [Hb] = 6.4%, p < 0,001) and 55% (splenic contraction = 20.0%, [Hb] = 4.8%, p < 0.001). This study shows a discernible dose-dependent relationship between splenic contraction and [Hb] increase with levels of exercise, effectively distinguishing between submaximal and maximal exercise intensity.
Assuntos
Hemoglobinas , Esqui , Baço , Humanos , Masculino , Baço/diagnóstico por imagem , Hemoglobinas/metabolismo , Esqui/fisiologia , Adulto , Exercício Físico/fisiologia , Apneia/fisiopatologia , Apneia/sangue , Consumo de Oxigênio/fisiologia , Contração Muscular/fisiologia , Esforço Físico/fisiologia , Adulto JovemRESUMO
The performance-degradation pattern of the planetary roller screw mechanism (PRSM) is difficult to predict and evaluate due to a variety of factors. Load-carrying capacity, transmission accuracy, and efficiency are the main indicators for evaluating the performance of the PRSM. In this paper, a testing device for the comprehensive performance of the PRSM is designed by taking into account the coupling relationships among temperature rise, vibration, speed, and load. First, the functional design and error calibration of the testing device were conducted. Secondly, the PRSM designed in the supported project was taken as the research object to conduct degradation tests on its load-bearing capacity and transmission accuracy and analyze the changes in transmission efficiency. Third, the thread profile and wear condition were scanned and inspected using a universal tool microscope and an optical microscope. Finally, based on the monitoring module of the testing device, the vibration status during the PRSM testing process was collected in real time, laying a foundation for the subsequent assessment of the changes in the performance state of the PRSM. The test results reveal the law of performance degradation of the PRSM under the coupled effects of temperature, vibration, speed, and load.
RESUMO
This study proposes a new method to more effectively plan the use of beaches by combining indices and artificial vision systems. The Overcrowding Index (Iocr) measures the number of people on the beach in relation to its surface area, while the Distancing Index (Idis) evaluates the spatial distribution and distance between beachgoers. Both indices are combined to generate an overall index called the Occupancy Index (Iocu). The proposed methodology uses cameras and computer vision algorithms such as YOLOX and ByteTrack to automate the counting of people and measure distances. This allows for continuous monitoring of the quantity (carrying capacity and density) and distribution of beachgoers (degree of social distancing), as well as a functional prototype in which the indices are calculated in real time. It was observed that as density increased, Iocr showed an inverse trend, being close to 0 when approaching maximum density. The calculation of the distance between groups validated that, even with medium densities, close to the shoreline, the reference distance of 2 m was not accomplished, obtaining a very low Idis (0.18). The resulting Iocu was 0.31, validating the appropriate integration of both indices. Overall, the system's effectiveness for accurately monitoring the number of users and their distribution, and calculating the defined indices for beach management, is demonstrated. The proposed approach provides a valuable tool, allowing a more efficient management of beaches according to their actual occupancy and user distribution.
RESUMO
The interaction between water environment and social economy at a basin scale is complex and challenging to quantify. To address this issue, this study proposes an integrated framework that builds parametric connections among water, contaminants, administrative regions, and social activities. The framework, known as the water environmental carrying capacity (WECC) optimization framework, effectively captures the intricacy of the interaction and integrates socio-economic parameter structure relationships, a water environmental model, a WECC optimization model, and a sensitivity analysis of regulatory parameters. Applied to the Anhui-Huaihe Basin in mid-eastern China, the framework considers nine administrative regions and three economic factors: industry, agriculture, and GDP per capita (pGDP). Results show that the current water environmental carrying capacity of the watershed is insufficient to meet socio-economic development requirements. After optimization, the WECC for industry, agriculture, and pGDP in the region increased by 22.40%, 26.59%, and 15.08% respectively. Overall COD and NH4-N discharge decreased by 13.6% and 14.7% respectively, effectively reducing pollution loads in rivers and enhancing sustainable development potential. At the regional scale, optimization for industry, agriculture, and pGDP exhibited different characteristics, but all aimed to improve efficiency by reducing the K value (pollution discharge/output value ratio). Regions with industrial treatment rates (αwt) below 0.8 should prioritize increasing treatment rates, while those above 0.8 should consider industrial upgrading for enhanced efficiency. For agriculture, important sensitive parameters for farming and livestock breeding are the proportion of high standard farmland (αs) and the scale breeding ratio (αb), which should be increased to above 0.15 and 0.83 respectively for all regions to achieve agricultural optimization. For pGDP optimization, the focus is on improving living environments and reducing pollution discharge, with crucial measures including collecting and treating rural domestic sewage, where the rural toilet improvement rate (αt) in each region should be increased to 0.78 or above. The results emphasize the need for both interregional allocation and intraregional planning to achieve comprehensive basin optimization and a harmonious balance between regional development and water environment.
Assuntos
Conservação dos Recursos Naturais , Água , Poluição Ambiental , Rios/química , Agricultura , ChinaRESUMO
The complex-enhanced hierarchical relationship among multiple stakeholders in the water-environment-agriculture interactive system has been overlooked. This study develops a leader-follower-enhanced framework (named as FCMLP) that integrates variable-weight combination prediction model, multi-level programming, and fuzzy credibility constrained programming, which can effectively address the above problems under uncertainties. Five water ecological carrying capacity (WECC) statuses are treated as a critical constraint into the modeling framework to improve the accuracy of decision-making. An interactive fuzzy satisfaction algorithm is advanced for solving this multi-level problem, in which COD discharge minimization, economic benefits maximization, and grain yield maximization are taken as the upper-, middle-, and lower-level goals, respectively. The framework is applied to plan the cross-regional water-environment-agriculture interactive system in the Beijing-Tianjin-Hebei and Yangtze River Economic Belt. Solutions reveal that increased WECC status and credibility level would decrease 1.40%-1.74%, 0.71%-9.61%, and 1.63%-2.26% of water resources allocation, COD emissions, and economic benefits, respectively. Crop area and grain yield would dramatically decline by 4.13%-4.46% and 4.03%-4.67% when a credibility level increases from 0.8 to 1, respectively. The overall satisfactory degree would range from 0.58 to 0.70, which illustrates interactive decision-making process of multiple stakeholders. Significant differences can be observed in the optimized schemes of water resources allocation and environmental-economic-agricultural performances among various models. The amounts of allocated water resources, pollutant discharge, and economic output from the FCMLP model would be respectively 11.30%-13.45%, 14.90%-15.21%, and 73.12%-73.48% higher than those from the environment- and agriculture-oriented schemes, yet 13.81%, 32.05%, and 15.29% lower than those from the economy-oriented scheme. Some water adaptability countermeasures are given for ensuring the scientific operation of the South-to-North Water Transfer Project and alleviating conflicts between water source and receiving areas. Further exploration of the optimization scheme of water-environment-energy-agriculture system driven by climate change is still required for guaranteeing the dynamic balance of regional resources.
Assuntos
Agricultura , Agricultura/métodos , Conservação dos Recursos Naturais , Lógica Fuzzy , Recursos Hídricos , Água , Tomada de Decisões , EcologiaRESUMO
In many animals, males compete for access to fertile females. The resulting sexual selection leads to sex differences in morphology and behaviour, but may also have consequences for physiology. Pectoral sandpipers are an arctic-breeding polygynous shorebird in which males perform elaborate displays around-the-clock and move over long distances to sample potential breeding sites, implying the need for physiological adaptations to cope with extreme endurance. We examined the oxygen carrying capacity of pectoral sandpipers, measured as the volume percentage of red blood cells in blood (haematocrit, Hct). We found a remarkable sex difference in Hct levels, with males having much higher values (58.9 ± 3.8 s.d.) than females (49.8 ± 5.3 s.d.). While Hct values of male pectoral sandpipers are notable for being among the highest recorded in birds, the sex difference we report is unprecedented and more than double that of any previously described. We also show that Hct values declined after arrival to the breeding grounds in females, but not in males, suggesting that males maintain an aerobic capacity during the mating period equivalent to that sustained during trans-hemispheric migration. We conclude that sexual selection for extreme physical performance in male pectoral sandpipers has led to exceptional sex differences in oxygen carrying capacity.
Assuntos
Charadriiformes , Caracteres Sexuais , Animais , Feminino , Masculino , Seleção Sexual , Conservação dos Recursos Naturais , Comportamento Sexual Animal/fisiologia , Aves/fisiologia , Charadriiformes/fisiologiaRESUMO
Promoting ecological conservation and high-quality development in the Yellow River basin is an important objective in China's 14th Five-Year Plan. Understanding the spatio-temporal evolution of and factors affecting the resources and environmental carrying capacity (RECC) of the urban agglomerations is critical for boosting high-quality green-oriented development. We first combined the Driver-Pressure-State-Impact-Response (DPSIR) framework and the improved Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model to evaluate the RECC of Shandong Peninsula urban agglomeration in 2000, 2010 and 2020; we then used trend analysis and spatial autocorrelation analysis to understand the spatio-temporal evolution and distribution pattern of RECC. Furthermore, we employed Geodetector to detect the influencing factors and classified the urban agglomeration into six zones based on the weighted Voronoi diagram of RECC as well as specific conditions of the study area. The results show that the RECC of Shandong Peninsula urban agglomeration increased consistently over time, from 0.3887 in 2000 to 0.4952 in 2010 and 0.6097 in 2020, respectively. Geographically, RECC decreased gradually from the northeast coast to the southwest inland. Globally, only in 2010 the RECC presented a significant spatial positive correlation, and that in the other years were not significant. The high-high cluster was mainly located in Weifang, while the low-low cluster in Jining. Furthermore, our study reveals three key factors-advancement of industrial structure, resident consumption level, and water consumption per ten thousand yuan of industrial added value-that affected the distribution of RECC. Other factors, including the interactions between residents' consumption level and environmental regulation, residents' consumption level and advancement of industrial structure, as well as between the proportion of R&D expenditure in GDP and resident consumption level also played important roles resulting in the variation of RECC among different cities within the urban agglomeration. Accordingly, we proposed suggestions for achieving high-quality development for different zones.
Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Econômico , Cidades , Análise Espacial , Indústrias , China , Rios , UrbanizaçãoRESUMO
Pyrrolizidine alkaloids (PAs) are widely distributed natural toxins and have been extensively studied for their hepatotoxicity. However, PA-induced pulmonary toxicity remains less studied regarding the initiating mechanism and treatment approaches. Our previous study demonstrated the formation of pyrrole-hemoglobin adducts after PA exposure in vivo, which is suspected to affect the oxygen-carrying capacity of erythrocytes [red blood cells (RBCs)] consequently. The present study aimed to investigate the effects of PAs on the oxygen-carrying capacity of RBCs and the potential of targeting RBC-mediated hypoxia to alleviate PA-induced lung injury. First, rats were treated with retrorsine (RTS) or monocrotaline (MCT) intravenously at 0.2 mmol/kg. The results of Raman spectrometry analysis on blood samples revealed both RTS and MCT significantly reduced the oxygen-carrying capacity of RBCs. Further, MCT (0.2 mmol/kg) was orally given to the rats with or without pretreatment with two doses of erythropoietin (Epo, 500 IU/kg/dose every other day), an RBC-stimulating agent. Biochemical and histological results showed pretreatment with Epo effectively reduced the cardiopulmonary toxicity induced by MCT. These findings provide the first evidence that adduction on hemoglobin, and the resulting RBC damage and impaired oxygen-carrying capacity, are the major initiating mechanism underlying PA-induced pulmonary arterial hypertension (PAH), while targeting the RBC damage is a potential therapeutic approach for PA-induced lung injury.
Assuntos
Pneumopatias , Lesão Pulmonar , Alcaloides de Pirrolizidina , Ratos , Animais , Lesão Pulmonar/patologia , Fígado , Alcaloides de Pirrolizidina/toxicidade , Monocrotalina/toxicidade , Pneumopatias/patologia , Eritrócitos , Hemoglobinas , Hipóxia/patologia , OxigênioRESUMO
Geological environment carrying capacity (GECC) is the key to regional sustainable development (RSD). The study has become an international heat due to frequent global geological disasters, which have resulted in socio-economic losses, weakened GECC. Therefore, this study combined with quantity of information (QI), random forest (RF) and XGBoost (XGB) algorithms, constructed a GECC assessment model in Xiuyan, China based on remote sensing (RS) and geographic information system (GIS) techniques. The validity of the model was verified by disaster information in two period. The results reveal that the indicator system of RS image can reflect the geological factors' influence on GECC more truthfully, and avoided duplication of indicators. The correlation coefficients of the indicators were all less than 0.9, which showed the validity of the indicator system. The QI_RF model performed best with high accuracy (0.96). The mean absolute error (MAE) is 0.098. The disaster management cost (DMC), elevation and rainfall were the main indicators with weights over 0.1. The GECC in study area is mainly balanced. Although the overloaded area was smallest, it was the key area to limit the RSD, which had been improved by adjusting the land or human activities planning. Compared with the results of geological disasters in two period, the disasters in overloaded area were reduced by 58%, which showed that the improvement measures under this model were effective. The method of GECC assessment based on RS and integrated model proposed in this study takes into account the common indicators that affect the development of geological disasters. It can provide reference for RSD under the influence of geological disasters and has universal applicability.
Assuntos
Conservação dos Recursos Naturais , Desastres , Humanos , Tecnologia de Sensoriamento Remoto , Desenvolvimento Sustentável , Sistemas de Informação Geográfica , ChinaRESUMO
As urbanization progresses, the number of resource and environmental problems that impede sustainable growth in cities is increasing. The urban resource and environment carrying capacity (URECC) serves as a crucial indicator for understanding the interaction between human activities and urban resource and environmental systems, guiding the practice of sustainable urban development. Thus, accurately comprehending and analyzing the URECC and coordinating the balanced growth of the economy and the URECC is essential to ensure cities' sustainable development. In this research, we combine DMSP/OLS and NPP/VIIRS night-time light data to assess the economic growth of Chinese cities using panel data for 282 prefecture-level cities in China from 2007 to 2019. The findings reveal the following outcomes: (1) Economic growth significantly contributes to the enhancement of the URECC, and the economic expansion of neighboring areas also promotes the URECC within the region. Economic growth can indirectly improve the URECC by fostering internet development, industrial upgrading, technological progress, opening up opportunities, and educational advancements. (2) The results from the threshold regression analysis suggest that as the level of internet development improves, the influence of economic growth on the URECC is initially constrained and then facilitated. Similarly, as financial development improves, the effect of economic growth on the URECC is initially constrained and subsequently promoted, with the promotion effect gradually increasing. (3) The relationship between economic expansion and the URECC varies across regions with different geographic locations, administrative levels, scales, and resource endowments.
Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Sustentável , Humanos , Cidades , Urbanização , ChinaRESUMO
Safe and Just Space (SJS) is a framework for determining the range where the use of natural resources within the Earth's carrying capacity can maintain human well-being. However, there has been no systematic monitoring and evaluation of their sustainability across time and space. Here we developed and applied a model and a sustainable development human safe operation space (SDHSOS) index to assess the sustainability capacity and development path of 149 countries from 2000 to 2018. The results demonstrate that (1) The overall sustainable development capacity of all countries is at the middle or lower level and that it has increased over time. (2) The sustainability of natural and socio-economic dimensions and their degree of change show obvious geographic differences and income differences. (3) The national development path divided by income is characterized by a decline in natural environment dimensions and an increase in socio-economic dimensions, which mainly reflects a traditional development path model that promotes social welfare at the expense of the natural environment. This study suggests that nations can accurately identify development characteristics, expand their comparative advantages is the key to improving sustainable development capabilities.
Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Sustentável , Humanos , RendaRESUMO
AbstractThe process of adaptation toward novel environments is directly connected to the acquisition of higher fitness relative to others. Such increased fitness is obtained by changes in life history traits that may directly impact population dynamics. From a functional perspective, increased fitness can be achieved through higher resource use or more efficient resource use, each potentially having its own impact on population dynamics. In the first case, adaptation is expected to directly translate into higher population growth. In the second case, adaptation requires less energy and hence may lead to higher carrying capacity. Adaptation may thus lead to changes in ecological dynamics and vice versa. Here, by using a combination of evolutionary experiments with spider mites and a population dynamic model, we investigate how an increase in fecundity (a validated proxy for adaptation) affects a population's ecological dynamics. Our results show that adaptation can positively affect population growth rate and either positively or negatively affect carrying capacity, depending on the ecological condition leading to variation in adaptation. These findings show the importance of evolution for population dynamics in changing environments, which may ultimately affect the stability and resilience of populations.
Assuntos
Evolução Biológica , Tetranychidae , Aclimatação , Adaptação Fisiológica , Animais , Dinâmica PopulacionalRESUMO
Drylands cover more than 40% of Earth's land surface and occur at the margin of forest distributions due to the limited availability of water for tree growth. Recent elevated temperature and low precipitation have driven greater forest declines and pulses of tree mortality on dryland sites compared to humid sites, particularly in temperate Eurasia and North America. Afforestation of dryland areas has been widely implemented and is expected to increase in many drylands globally to enhance carbon sequestration and benefits to the human environment, but the interplay of sometimes conflicting afforestation outcomes has not been formally evaluated yet. Most previous studies point to conflicts between additional forest area and water consumption, in particular water yield and soil conservation/desalinization in drylands, but were generally confined to local and regional scales. Our global synthesis demonstrates that additional tree cover can amplify water consumption through a nonlinear increase in evapotranspiration-depending on tree species, age, and structure-which will be further intensified by future climate change. In this review we identify substantial knowledge gaps in addressing the dryland afforestation dilemma, where there are trade-offs with planted forests between increased availability of some resources and benefits to human habitats versus the depletion of other resources that are required for sustainable development of drylands. Here we propose a method of addressing comprehensive vegetation carrying capacity, based on regulating the distribution and structure of forest plantations to better deal with these trade-offs in forest multifunctionality. We also recommend new priority research topics for dryland afforestation, including: responses and feedbacks of dryland forests to climate change; shifts in the ratio of ecosystem ET to tree cover; assessing the role of scale of afforestation in influencing the trade-offs of dryland afforestation; and comprehensive modeling of the multifunctionality of dryland forests, including both ecophysiological and socioeconomic aspects, under a changing climate.
Assuntos
Ecossistema , Florestas , Mudança Climática , Humanos , Árvores , ÁguaRESUMO
Blood oxygen-carrying capacity is shaped both by the ambient oxygen availability as well as species-specific oxygen demand. Erythrocytes are a critical part of oxygen transport and both their size and shape can change in relation to species-specific life-history, behavioural or ecological conditions. Here, we test whether components of the environment (altitude), life history (reproductive mode, body temperature) and behaviour (diving, foraging mode) drive erythrocyte size variation in the Lepidosauria (lizards, snakes and rhynchocephalians). We collected data on erythrocyte size (area) and shape (L/W: elongation ratio) from Lepidosauria across the globe (N = 235 species). Our analyses show the importance of oxygen requirements as a driver of erythrocyte size. Smaller erythrocytes were associated with the need for faster delivery (active foragers, high-altitude species, warmer body temperatures), whereas species with greater oxygen demands (diving species, viviparous species) had larger erythrocytes. Erythrocyte size shows considerable cross-species variation, with a range of factors linked to the oxygen delivery requirements being major drivers of these differences. A key future aspect for study would include within-individual plasticity and how changing states, for example, pregnancy, perhaps alter the size and shape of erythrocytes in Lepidosaurs.