Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 186(11): 2288-2312, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37236155

RESUMO

Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.


Assuntos
Inflamassomos , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/metabolismo , Morte Celular , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
2.
Immunol Rev ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351983

RESUMO

Inflammasomes are multi-protein complexes that assemble within the cytoplasm of mammalian cells in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), driving the secretion of the pro-inflammatory cytokines IL-1ß and IL-18, and pyroptosis. The best-characterized inflammasome complexes are the NLRP3, NAIP-NLRC4, NLRP1, AIM2, and Pyrin canonical caspase-1-containing inflammasomes, and the caspase-11 non-canonical inflammasome. Newer inflammasome sensor proteins have been identified, including NLRP6, NLRP7, NLRP9, NLRP10, NLRP11, NLRP12, CARD8, and MxA. These inflammasome sensors can sense PAMPs from bacteria, viruses and protozoa, or DAMPs in the form of mitochondrial damage, ROS, stress and heme. The mechanisms of action, physiological relevance, consequences in human diseases, and avenues for therapeutic intervention for these novel inflammasomes are beginning to be realized. Here, we discuss these emerging inflammasome complexes and their putative activation mechanisms, molecular and signaling pathways, and physiological roles in health and disease.

3.
Mol Microbiol ; 116(6): 1420-1432, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738270

RESUMO

The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Citosol/microbiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Fagossomos/microbiologia , Animais , Bactérias/genética , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Infecções Bacterianas/fisiopatologia , Citosol/metabolismo , Humanos , Fagocitose , Fagossomos/genética , Fagossomos/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915754

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, characterized histopathologically by intra-neuronal tau-related lesions and by the accumulation of amyloid ß-peptide (Aß) in the brain parenchyma and around cerebral blood vessels. According to the vascular hypothesis of AD, an alteration in the neurovascular unit (NVU) could lead to Aß vascular accumulation and promote neuronal dysfunction, accelerating neurodegeneration and dementia. To date, the effects of insoluble vascular Aß deposits on the NVU and the blood-brain barrier (BBB) are unknown. In this study, we analyze different Aß species and their association with the cells that make up the NVU. We evaluated post-mortem AD brain tissue. Multiple immunofluorescence assays were performed against different species of Aß and the main elements that constitute the NVU. Our results showed that there are insoluble vascular deposits of both full-length and truncated Aß species. Besides, insoluble aggregates are associated with a decrease in the phenotype of the cellular components that constitute the NVU and with BBB disruption. This approach could help identify new therapeutic targets against key molecules and receptors in the NVU that can prevent the accumulation of vascular fibrillar Aß in AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/patologia , Vasos Sanguíneos/patologia , Encéfalo/patologia , Microglia/patologia , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Vasos Sanguíneos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Estudos de Casos e Controles , Caspases/metabolismo , Humanos , Junções Íntimas/patologia
5.
Immunol Rev ; 277(1): 61-75, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28462526

RESUMO

Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicates that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programmed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal, or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1ß and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens.


Assuntos
Caspases/metabolismo , Infecções/imunologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Piroptose , Animais , Humanos , Imunidade , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo
6.
J Cell Physiol ; 234(8): 13571-13581, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30604868

RESUMO

In our previous studies, programmed cell death (PCD) was induced in human periodontal ligament (PDL) cells, through activation of caspase-3 and upregulation of CASP5 gene (encoding caspase-5 protein), in response to mechanical stretch loading. The aim of this study is to explore the relationship between the inflammatory caspase, caspase-5, and the apoptotic executioner protein, caspase-3, in human PDL cells. Here, we found that cyclic stretching upregulated the activity and the protein expression level of caspase-3 and -5 and the addition of the caspase-3 inhibitor or caspase-5 inhibitor significantly inhibited the stretch-induced PCD. Meanwhile, the inhibition of caspase-5 inhibited the activation of caspase-3 and vice versa. The result of coimmunoprecipitation also demonstrated that the expression of caspase-3 was immunoprecipitated with caspase-5. Thus, our study revealed that the in vitro application of cyclic stretching induced PCD by activation of caspase-3 and -5 in human PDL cells, and these two caspases could interact with each other after mechanical stretch loading. The study may facilitate further studies on the mechanism of stretch-induced PCD and help us understand the force-related periodontal homeostasis and remodeling better.


Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Caspases/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/enzimologia , Apoptose/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Células Cultivadas , Ativação Enzimática , Humanos , Ligamento Periodontal/efeitos dos fármacos , Transdução de Sinais , Estresse Mecânico
7.
Trends Biochem Sci ; 39(12): 574-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25458607

RESUMO

Caspase-11 contributes to host defense against Gram-negative bacterial pathogens by inducing an inflammatory form of programmed cell death in infected cells. Lipopolysaccharides (LPS) have been identified as the microbial agents that stimulate caspase-11 activation; however, the mechanism of LPS detection has been unknown. In a recent study, Shao and colleagues demonstrate that caspase-11 and its human homologues, caspases -4 and -5, unexpectedly act as direct sensors of cytosolic LPS.


Assuntos
Bactérias Gram-Negativas/imunologia , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Modelos Imunológicos , Animais , Bactérias Gram-Negativas/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia
8.
J Cell Mol Med ; 21(9): 1954-1966, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28272793

RESUMO

Human guanylate binding protein-1 (GBP-1) belongs to the family of large GTPases. The expression of GBP-1 is inducible by inflammatory cytokines, and the protein is involved in inflammatory processes and host defence against cellular pathogens. GBP-1 is the first GTPase which was described to be secreted by eukaryotic cells. Here, we report that precipitation of GBP-1 with GMP-agarose from cell culture supernatants co-purified a 47-kD fragment of GBP-1 (p47-GBP-1) in addition to the 67-kD full-length form. MALDI-TOF sequencing revealed that p47-GBP-1 corresponds to the C-terminal helical part of GBP-1 and lacks most of the globular GTPase domain. In silico analyses of protease target sites, together with cleavage experiments in vitro and in vivo, showed that p67-GBP-1 is cleaved by the inflammatory caspases 1 and 5, leading to the formation of p47-GBP-1. Furthermore, the secretion of p47-GBP-1 was found to occur via a non-classical secretion pathway and to be dependent on caspase-1 activity but independent of inflammasome activation. Finally, we showed that p47-GBP-1 represents the predominant form of secreted GBP-1, both in cell culture supernatants and, in vivo, in the cerebrospinal fluid of patients with bacterial meningitis, indicating that it may represent the biologically active form of extracellular GBP-1. These findings confirm the involvement of caspase-1 in non-classical secretion mechanisms and open novel perspectives for the extracellular function of secreted GBP-1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Processamento de Proteína Pós-Traducional , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Caspase 1/metabolismo , Feminino , Proteínas de Ligação ao GTP/líquido cefalorraquidiano , Proteínas de Ligação ao GTP/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamassomos/metabolismo , Interferon gama/farmacologia , Masculino , Meningites Bacterianas/líquido cefalorraquidiano , Meningites Bacterianas/metabolismo , Pessoa de Meia-Idade , Peso Molecular , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Adulto Jovem
9.
Eur J Immunol ; 45(10): 2918-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173988

RESUMO

Humans encode two inflammatory caspases that detect cytoplasmic LPS, caspase-4 and caspase-5. When activated, these trigger pyroptotic cell death and caspase-1-dependent IL-1ß production; however the mechanism underlying this process is not yet confirmed. We now show that a specific NLRP3 inhibitor, MCC950, prevents caspase-4/5-dependent IL-1ß production elicited by transfected LPS. Given that both caspase-4 and caspase-5 can detect cytoplasmic LPS, it is possible that these proteins exhibit some degree of redundancy. Therefore, we generated human monocytic cell lines in which caspase-4 and caspase-5 were genetically deleted either individually or together. We found that the deletion of caspase-4 suppressed cell death and IL-1ß production following transfection of LPS into the cytoplasm, or in response to infection with Salmonella typhimurium. Although deletion of caspase-5 did not confer protection against transfected LPS, cell death and IL-1ß production were reduced after infection with Salmonella. Furthermore, double deletion of caspase-4 and caspase-5 had a synergistic effect in the context of Salmonella infection. Our results identify the NLRP3 inflammasome as the specific platform for IL-1ß maturation, downstream of cytoplasmic LPS detection by caspase-4/5. We also show that both caspase-4 and caspase-5 are functionally important for appropriate responses to intracellular Gram-negative bacteria.


Assuntos
Proteínas de Transporte/imunologia , Caspases Iniciadoras/imunologia , Caspases/imunologia , Lipopolissacarídeos/imunologia , Monócitos/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Linhagem Celular Tumoral , Humanos , Interleucina-1beta/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR
10.
Eur J Immunol ; 45(10): 2758-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332156

RESUMO

Murine caspase-11 and its human orthologues, caspase-4 and caspase-5, activate an inflammatory response following cytoplasmic recognition of cell wall constituents from Gram-negative bacteria, such as LPS. This inflammatory response involves pyroptotic cell death and the concomitant release of IL-1α, as well as the production of IL-1ß and IL-18 through the noncanonical NLR family, pyrin domain containing 3 (NLRP3) pathway. This commentary discusses three papers in this issue of the European Journal of Immunology that advance our understanding of the roles of caspase-11, -4, and -5 in the noncanonical pathway. By utilizing the new gene editing technique, clustered regularly interspaced short palindromic repeats (CRISPR), as well as sensitive cell imaging techniques, these papers establish that cytoplasmic LPS-dependent IL-1ß production requires the NLRP3 inflammasome and that its activation is dependent on K(+) efflux, whereas IL-1α release and pyroptotic cell death pathways are NLRP3-independent. These findings expand on previous research implicating K(+) efflux as the principal trigger for NLRP3 activation and suggest that canonical and noncanonical NLRP3 pathways are not as dissimilar as first thought.


Assuntos
Proteínas de Transporte/imunologia , Inflamassomos/imunologia , Potássio/metabolismo , Transdução de Sinais/imunologia , Animais , Caspases/imunologia , Caspases Iniciadoras , Humanos , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Transporte de Íons/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR
11.
Bioorg Med Chem Lett ; 26(22): 5476-5480, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27777011

RESUMO

The inflammatory caspases (caspase-1, -4 and -5) are potential therapeutic targets for autoimmune and inflammatory diseases due to their involvement in the immune response upon inflammasome formation. A series of small molecules based on the 4-(piperazin-1-yl)-2,6-di(pyrrolidin-1-yl)pyrimidine scaffold were synthesized with varying substituents on the piperazine ring. Several compounds were pan-selective inhibitors of the inflammatory caspases, caspase-1, -4 and -5, with the ethylbenzene derivative CK-1-41 displaying low nanomolar Ki values across this family of caspases. Three analogs were nearly 10 fold selective for caspase-5 over caspase-1 and -4. The compounds display non-competitive, time dependent inhibition profiles. To our knowledge, this series is the first example of small molecule inhibitors of all three inflammatory caspases.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Caspases Iniciadoras/metabolismo , Caspases/metabolismo , Piperazinas/química , Piperazinas/farmacologia , Caspase 1/química , Caspases/química , Caspases Iniciadoras/química , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Simulação de Acoplamento Molecular , Pirimidinas/química , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Int J Mol Sci ; 16(10): 23337-54, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26426007

RESUMO

Recently, the focus of murine caspase-11 and human orthologs caspase-4, -5 research has been on their novel function to induce noncanonical inflammasome activation in direct response to Gram-negative bacterial infection. On the other hand, a new role in anti-bacterial autophagy has been attributed to caspase-11, -4 and -5, which currently stands largely unexplored. In this review, we connect lately emerged evidence that suggests these caspases have a key role in anti-bacterial autophagy and discuss the growing implications of a danger molecule--extracellular ATP--and NADPH oxidase-mediated ROS generation as novel inducers of human caspase-4, -5 signaling during infection. We also highlight the adeptness of persistent pathogens like Porphyromonas gingivalis, a Gram-negative anaerobe and successful colonizer of oral mucosa, to potentially interfere with the activated caspase-4 pathway and autophagy. While, the ability of caspase-4, -5 to promote autophagolysosomal fusion is not well understood, the abundance of caspase-4 in skin and other mucosal epithelial cells implies an important role for caspase-4 in mucosal defense, supporting the view that caspase-4, -5 may play a non-redundant part in innate immunity. Thus, this review will join the currently disconnected cutting-edge research thereby proposing a working model for regulation of caspase-4, -5 in pathogen elimination via cellular-trafficking.


Assuntos
Bactérias/metabolismo , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , Modelos Biológicos
13.
mBio ; 15(7): e0297523, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38837391

RESUMO

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.


Assuntos
Caspases , Inflamação , Especificidade por Substrato , Caspases/metabolismo , Caspases/genética , Humanos , Inflamação/metabolismo , Animais , Domínio Catalítico , Piroptose
14.
Front Immunol ; 14: 1169968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180156

RESUMO

Introduction: Human adenovirus (HAdV) is a common respiratory virus, which can lead to severe pneumonia in children and immunocompromised persons, and canonical inflammasomes are reported to be involved in anti-HAdV defense. However, whether HAdV induced noncanonical inflammasome activation has not been explored. This study aims to explore the broad roles of noncanonical inflammasomes during HAdV infection to investigate the regulatory mechanism of HAdV-induced pulmonary inflammatory damage. Methods: We mined available data on GEO database and collected clinical samples from adenovirus pneumonia pediatric patients to investigate the expression of noncanonical inflammasome and its clinical relevance. An in vitro cell model was employed to investigate the roles of noncanonical inflammasomes in macrophages in response to HAdV infection. Results: Bioinformatics analysis showed that inflammasome-related genes, including caspase-4 and caspase-5, were enriched in adenovirus pneumonia. Moreover, caspase-4 and caspase-5 expression levels were significantly increased in the cells isolated from peripheral blood and broncho-alveolar lavage fluid (BALF) of pediatric patients with adenovirus pneumonia, and positively correlated with clinical parameters of inflammatory damage. In vitro experiments revealed that HAdV infection promoted caspase-4/5 expression, activation and pyroptosis in differentiated THP-1 (dTHP-1) human macrophages via NF-κB, rather than STING signaling pathway. Interestingly, silencing of caspase-4 and caspase-5 in dTHP-1 cells suppressed HAdV-induced noncanonical inflammasome activation and macrophage pyroptosis, and dramatically decreased the HAdV titer in cell supernatants, by influencing virus release rather than other stages of virus life cycle. Discussion: In conclusion, our study demonstrated that HAdV infection induced macrophage pyroptosis by triggering noncanonical inflammasome activation via a NF-kB-dependent manner, which may explore new perspectives on the pathogenesis of HAdV-induced inflammatory damage. And high expression levels of caspase-4 and caspase-5 may be a biomarker for predicting the severity of adenovirus pneumonia.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Pneumonia Viral , Humanos , Criança , Inflamassomos/metabolismo , Piroptose , Infecções por Adenovirus Humanos/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Caspases/metabolismo , Pneumonia Viral/metabolismo , Infecções por Adenoviridae/complicações
15.
Methods Mol Biol ; 2696: 123-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37578720

RESUMO

The canonical activation of multimeric inflammasomes usually occurs through caspase-1 activation, and it is characterized by the presence of extracellular IL-1ß and IL-18 or measuring danger signal proteins, such as HMGB1 using enzyme-linked immunosorbent assay (ELISA) or Western blots; these assays differentiate non-cleaved and cleaved forms of these two cytokines (the cleaved form is the mature and active form). Similar techniques can be used to assess noncanonical inflammasome activation. Real-time PCR can measure the relative mRNA expression for a specific gene, whereas Western blots or immunocytochemistry can detect the presence of proteins by binding of specific antibodies to their antigens in biological samples. Moreover, noncanonical inflammasome activation can be evaluated through the cleavage of the amino and the carboxy terminals of one important component, gasdermin D (GSDMD), whose cleavage induces its pyroptotic activity. Thus, the analysis of cleaved GSDMD is an ideal pathway to study the noncanonical inflammasome. ELISA and immunoblot can be performed on cell culture supernatants or cell extracts.

16.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824844

RESUMO

The mammalian innate immune system uses germline-encoded cytosolic pattern-recognition receptors (PRRs) to detect intracellular danger signals. At least six of these PRRs are known to form multiprotein complexes called inflammasomes which activate cysteine proteases known as caspases. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines such as IL-1ß and IL-18, as well as the pore forming protein, gasdermin D (GSDMD), to induce pyroptotic cell death. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are activated by intracellular LPS to cleave GSDMD, but their role in direct processing of inflammatory cytokines has not been established. Here we show that active CASP4/5 directly cleave IL-18 to generate the active species. Surprisingly, we also discovered that CASP4/5/11 cleave IL-1ß at D27 to generate a 27 kDa fragment that is predicted to be inactive and cannot signal to the IL-1 receptor. Mechanistically, we discovered that the sequence identity of the P4-P1 tetrapeptide sequence adjacent to the caspase cleavage site (D116) regulates the recruitment and processing of IL-1ß by inflammatory caspases to generate the bioactive species. Thus, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation.

17.
Cell Rep ; 42(12): 113581, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38103201

RESUMO

Inflammasomes are multiprotein signaling complexes that activate the innate immune system. Canonical inflammasomes recruit and activate caspase-1, which then cleaves and activates IL-1ß and IL-18, as well as gasdermin D (GSDMD) to induce pyroptosis. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are known to cleave GSDMD, but their role in direct processing of other substrates besides GSDMD has remained unknown. Here, we show that CASP4/5 but not CASP11 can directly cleave and activate IL-18. However, CASP4/5/11 can all cleave IL-1ß to generate a 27-kDa fragment that deactivates IL-1ß signaling. Mechanistically, we demonstrate that the sequence identity of the tetrapeptide sequence adjacent to the caspase cleavage site regulates IL-18 and IL-1ß recruitment and activation. Altogether, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation that may aid in developing new therapeutics for immune-related disorders.


Assuntos
Caspases , Interleucina-18 , Interleucina-1beta , Caspases/genética , Caspases/imunologia , Interleucina-18/química , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/química , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Células RAW 264.7 , Células HEK293 , Células HeLa , Células THP-1 , Humanos , Inflamassomos/imunologia , Transdução de Sinais/genética , Proteólise , Ligação Proteica , Multimerização Proteica , Infecções por Salmonella/enzimologia , Infecções por Salmonella/imunologia
18.
Cells ; 11(7)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406727

RESUMO

Introduction: We previously showed that caspase-1 and -11, which are activated by inflammasomes, mediate recovery from muscle ischemia in mice. We hypothesized that similar to murine models, inflammatory caspases modulate myogenicity and inflammation in ischemic muscle disease. Methods: Caspase activity was measured in ischemic and perfused human myoblasts in response to the NLRP3 and AIM2 inflammasome agonists (nigericin and poly(dA:dT), respectively) with and without specific caspase-1 or pan-caspase inhibition. mRNA levels of myogenic markers and caspase-1 were assessed, and protein levels of caspases-1, -4, -5, and -3 were measured by Western blot. Results: When compared to perfused cells, ischemic myoblasts demonstrated attenuated MyoD and myogenin and elevated caspase-1 mRNA. Ischemic myoblasts also had significantly higher enzymatic caspase activity with poly(dA:dT) (p < 0.001), but not nigericin stimulation. Inhibition of caspase activity including caspase-4/-5, but not caspase-1, blocked activation effects of poly(dA:dT). Ischemic myoblasts had elevated cleaved caspase-5. Inhibition of caspase activity deterred differentiation in ischemic but not perfused myoblasts and reduced the release of HMGB1 from both groups. Conclusion: Inflammatory caspases can be activated in ischemic myoblasts by AIM2 and influence ischemic myoblast differentiation and release of pro-angiogenic HMGB1. AIM2 inflammasome involvement suggests a role as a DNA damage sensor, and our data suggest that caspase-5 rather than caspase-1 may mediate the downstream mediator of this pathway.


Assuntos
Proteína HMGB1 , Doença Arterial Periférica , Animais , Caspase 1/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Isquemia , Camundongos , Mioblastos/metabolismo , RNA Mensageiro/metabolismo
19.
Front Pharmacol ; 13: 919567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712726

RESUMO

Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.

20.
Mol Aspects Med ; 76: 100924, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33187725

RESUMO

Inflammasomes are large cytosolic multiprotein complexes assembled in response to infection and cellular stress, and are crucial for the activation of inflammatory caspases and the subsequent processing and release of pro-inflammatory mediators. While caspase-1 is activated within the canonical inflammasome, the related caspase-4 (also known as caspase-11 in mice) and caspase-5 are activated within the non-canonical inflammasome upon sensing of cytosolic lipopolysaccharide (LPS) from Gram-negative bacteria. However, the consequences of canonical and non-canonical inflammasome activation are similar. Caspase-1 promotes the processing and release of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18 and the release of danger signals, as well as a lytic form of cell death called pyroptosis, whereas caspase-4, caspase-5 and caspase-11 directly promote pyroptosis through cleavage of the pore-forming protein gasdermin D (GSDMD), and trigger a secondary activation of the canonical NLRP3 inflammasome for cytokine release. Since the presence of the non-canonical inflammasome activator LPS leads to endotoxemia and sepsis, non-canonical inflammasome activation and regulation has important clinical ramifications. Here we discuss the mechanism of non-canonical inflammasome activation, mechanisms regulating its activity and its contribution to health and disease.


Assuntos
Inflamassomos , Piroptose , Animais , Caspases , Humanos , Mediadores da Inflamação , Lipopolissacarídeos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa