RESUMO
Surface determinants newly expressed by apoptotic cells that are involved in triggering potent immunosuppressive responses, referred to as "innate apoptotic immunity (IAI)" have not been characterized fully. It is widely assumed, often implicitly, that phosphatidylserine, a phospholipid normally cloistered in the inner leaflet of cells and externalized specifically during apoptosis, is involved in triggering IAI, just as it plays an essential role in the phagocytic recognition of apoptotic cells. It is notable, however, that the triggering of IAI in responder cells is not dependent on the engulfment of apoptotic cells by those responders. Contact between the responder and the apoptotic target, on the other hand, is necessary to elicit IAI. Previously, we demonstrated that exposure of protease-sensitive determinants on the apoptotic cell surface are essential for initiating IAI responses; exposed glycolytic enzyme molecules were implicated in particular. Here, we report our analysis of the involvement of externalized phosphatidylserine in triggering IAI. To analyze the role of phosphatidylserine, we employed a panel of target cells that either externalized phosphatidylserine constitutively, independently of apoptosis, or did not, as well as their WT parental cells that externalized the phospholipid in an apoptosis-dependent manner. We found that the externalization of phosphatidylserine, which can be fully uncoupled from apoptosis, is neither sufficient nor necessary to trigger the profound immunomodulatory effects of IAI. These results reinforce the view that apoptotic immunomodulation and phagocytosis are dissociable and further underscore the significance of protein determinants localized to the cell surface during apoptosis in triggering innate apoptotic immunity.
Assuntos
Apoptose , Imunidade Inata , Fagocitose , Fosfatidilserinas , Animais , Apoptose/fisiologia , Linhagem Celular , Humanos , Imunomodulação , Camundongos , Fagocitose/fisiologia , Fosfatidilserinas/metabolismoRESUMO
The terminal N-mono- and dimethylated derivatives of an estrone-salicylaldehyde thiosemicarbazone hybrid and their highly cytotoxic Cu(II) complexes were synthesized and characterized in addition to their structurally related simpler bicyclic analogues. Solution stability and structure of the complexes were determined by UV-visible spectrophotometry and electron paramagnetic resonance spectroscopy. The monomethylation has a minor influence on the pKa values, while the dimethylation results in somewhat more acidic derivatives compared to the non-methylated derivatives, although all the compounds are neutral at physiological pH. Based on the speciation studies performed in a 30% (v/v) dimethyl sulfoxide/water mixture, the four novel ligands form fairly high-stability complexes with Cu(II) ions, in which they coordinate in mono-anionic (Oâ,N,S) or di-anionic (Oâ,N,Sâ) binding modes. [CuLHâ1] species with (Oâ,N,Sâ)(H2O) coordination mode are present in solution at neutral pH, and these complexes were isolated and further studied. The Cu(II) complexes formed with the estrone hybrids were more stable in comparison with the bicyclic analogues. The terminal N-dimethylation results in the most stable complexes in a given ligand series. In vitro cytotoxicity of all the Cu(II) complexes was measured in 3D spheroids of HCT-116, A-549 and CH-1 human cancer cells which showed fairly low IC50 values (3.9â17.1 µM). The Cu(II) complexes caused reduced tumour growth, and they activated the caspase-3 and caspase-7 endoproteases leading to apoptosis except the case of the complex formed with the monomethylated bicyclic derivative, where other type of mechanisms of action seems to induce the cell death. Anticancer Cu(II) complexes of mono- and dimethylated salicylaldehyde thiosemicarbazone-estrone hybrids possessing high solution stability and strong cytotoxic effect against 3D spheroids of a series of human cancer cells. 398x273 mm (150 x 150 DPI).