Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(32): e2400343, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640450

RESUMO

An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next-generation cathodes. High-voltage, Fe- and Mg-substituted LiNi0.5Mn1.5O4 cathodes offer a low-cost, cobalt-free, yet energy-dense alternative to commercial cathodes. In this work, the effect of substitution on several important structure properties is explored, including Ni/Mn ordering, charge distribution, and extrinsic defects. In the cation-disordered samples studied, a correlation is observed between increased Fe/Mg substitution, Li-site defects, and Li-rich impurity phase formation-the concentrations of which are greater for Mg-substituted samples. This is attributed to the lower formation energy of MgLi defects when compared to FeLi defects. Li-site defect-induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+] with Fe/Mg substitution. In addition to impurity phases, other charge compensators are also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+], oxygen vacancies and intrinsic off-stoichiometry), although their effects are found to be negligible.

2.
Small Methods ; 7(11): e2300635, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572008

RESUMO

Sodium layered oxides feature in high capacity and diverse composition, however, are plagued by various issues including limited kinetics and interfacial instability with residual alkali. Conventional substitution/doping and heterogeneous coating are promising to tackle the problems of bulk and surface, respectively, but normally insufficient to address both. Herein, a post-substitution strategy is proposed to modify primary sodium-layered-oxide particles that can simultaneously deal with bulk and surficial issues. As a typical example, post Ti-substitution for O3-NaNi1/3 Fe1/3 Mn1/3 O2 is successfully performed by adjusting thermodynamic driving force, resulting in depth-controllable Ti infusion from surface to bulk, as proved by energy dispersive spectroscopy maps collected at the cross-section. Residual alkali species are efficiently diminished and benefited from the surface-to-bulk osmotic reaction, significantly improving Coulombic efficiency. Moreover, remarkable enhancements in reversible capacity (135 mAh g-1 at C/10), rate capability (74% retention at 5 C), and long-term cycling stability (80% retention after 300 cycles at 2 C) are achieved by manipulating gradient-like Ti distribution in a primary particle that brings with increased kinetics and strengthened interfacial stability, surpassing those given by rough heterotic coating and homogeneous Ti-substitution. Such post-substitution is expected to provide a universal strategy to modify primary layered-oxide particles for developing advanced cathode materials of SIBs.

3.
Sci Total Environ ; 806(Pt 2): 150560, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607099

RESUMO

Better performances of cellulose-based polymers can be achieved by adjust their architecture including the density of cationic modifications. In this study, the influence of cationic substitution on the ecotoxicity of four quaternized hydroxyethyl cellulose polymers (SK-H, SK-L, SK-M, SK-MH) was studied, using an aquatic biota acute ecotoxicity classification, and rheological and physicochemical characterization. The ecotoxicity characterization was achieved by performing standard ecotoxicity assays with seven key trophic level species: Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris, Daphnia magna, Brachionus calyciflorus, Heterocypris incongruens, and Danio rerio. Median effective concentrations were used to compute hazard concentrations, through the species sensitive distribution curves method. The microalga C. vulgaris and rotifer B. calyciflorus were the most sensitive species to the studied polymers. The SK-H variant was highly toxic to the rotifer. Overall, variants with intermediate levels of cationic charge (SK-M, SK-MH) presented the lowest toxicity. The SK-M variant showed the lowest value of maximum acceptable concentration (0.00354 mg/L), thus being indicated as the least toxic variant. Therefore, the obtained results suggest that industry could direct the development of this type of polymers by tailoring its cationic substitution to moderate levels, in such a way that both functionality and environmental toxicity could be maximized.


Assuntos
Chlorella vulgaris , Poluentes Químicos da Água , Aliivibrio fischeri , Animais , Organismos Aquáticos , Biota , Celulose/toxicidade , Daphnia , Polímeros/toxicidade , Poluentes Químicos da Água/toxicidade
4.
ACS Nano ; 15(5): 8537-8548, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33939408

RESUMO

Exploring the advanced oxygen evolution reaction (OER) electrocatalysts is highly desirable toward sustainable energy conversion and storage, yet improved efficiency in acidic media is largely hindered by its sluggish reaction kinetics. Herein, we rationally manipulate the electronic states of the strongly electron correlated pyrochlore ruthenate Y2Ru2O7 alternative through partial A-site substitution of Sr2+ for Y3+, efficiently improving its intrinsic OER activity. The optimized Y1.7Sr0.3Ru2O7 candidate observes a highly intrinsic mass activity of 1018 A gRu-1 at an overpotential of 300 mV with excellent durability in 0.5 M H2SO4 electrolyte. Combining synchrotron-radiation X-ray spectroscopic investigations with theoretical simulations, we reveal that the electron correlations in the Ru 4d band are weakened through coordinatively geometric regulation and charge redistribution by the exotic Sr2+ cation, enabling the delocalization of Ru 4d electrons via an insulator-to-metal transition. The induced Ru-O covalency promotion and band alignment rearrangement decreases the charge transfer energy to accelerate interfacial charge transfer kinetics. Meanwhile, the chemical affinity of oxygen intermediates is also rationalized to weaken the metal-oxygen binding strength, thus lowering the energy barrier of the overall reaction. This work offers fresh insights into designing advanced solid-state electrocatalysts and underlines the versatility of electronic structure manipulation in tuning catalytic activity.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 213: 134-140, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685551

RESUMO

Series of (Zn, M)3(BO3)(PO4) (M = Ca, Mg):Ce3+ were synthesized by a high temperature solid state method, and the luminescence properties were investigated. Zn3(BO3)(PO4):Ce3+ presents two emission bands, which shows the different changing trends with increasing Ce3+ concentration. When introduced Mg2+ and Ca2+ into Zn3(BO3)(PO4), (Zn, M)3(BO3)(PO4) (M = Ca, Mg):Ce3+ also shows two emission bands because Ce3+ occupies three kinds of Zn sites and transits from 5d energy level to double ground state. Therefore, the two emission bands of Zn3(BO3)(PO4):Ce3+ should be assigned to the different occupancy sites of Ce3+. Moreover, the selective emission was realized and the emission intensity of Ce3+ was enhanced by the cationic substitution.

6.
Materials (Basel) ; 10(1)2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28772452

RESUMO

Doped calcium phosphate bioceramics are promising materials for bone repair surgery because of their chemical resemblance to the mineral constituent of bone. Among these materials, BCP samples composed of hydroxyapatite (Ca10(PO4)6(OH)2) and ß-TCP (Ca3(PO4)2) present a mineral analogy with the nano-multi-substituted hydroxyapatite bio-mineral part of bones. At the same time, doping can be used to tune the biological properties of these ceramics. This paper presents a general overview of the doping mechanisms of BCP samples using cations from the first-row transition metals (from manganese to zinc), with respect to the applied sintering temperature. The results enable the preparation of doped synthetic BCP that can be used to tailor biological properties, in particular by tuning the release amounts upon interaction with biological fluids. Intermediate sintering temperatures stabilize the doping elements in the more soluble ß-TCP phase, which favors quick and easy release upon integration in the biological environment, whereas higher sintering temperatures locate the doping elements in the weakly soluble HAp phase, enabling a slow and continuous supply of the bio-inspired properties. An interstitial doping mechanism in the HAp hexagonal channel is observed for the six investigated cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) with specific characteristics involving a shift away from the center of the hexagonal channel (Fe3+, Co2+), cationic oxidation (Mn3+, Co3+), and also cationic reduction (Cu⁺). The complete crystallochemical study highlights a complex HAp doping mechanism, mainly realized by an interstitial process combined with calcium substitution for the larger cations of the series leading to potentially calcium deficient HAp.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa