Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Annu Rev Cell Dev Biol ; 35: 55-84, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283376

RESUMO

Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.


Assuntos
Membrana Celular/metabolismo , Endocitose , Transdução de Sinais , Animais , Evolução Biológica , Membrana Celular/química , Homeostase , Humanos
2.
Annu Rev Cell Dev Biol ; 34: 111-136, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296391

RESUMO

The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.


Assuntos
Cavéolas/metabolismo , Membrana Celular/genética , Vesículas Transportadoras/genética , Cavéolas/química , Cavéolas/patologia , Membrana Celular/química , Endocitose/genética , Humanos , Transdução de Sinais/genética , Estresse Mecânico , Relação Estrutura-Atividade , Vesículas Transportadoras/química
3.
Mol Cell ; 82(16): 3089-3102.e7, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35931084

RESUMO

The ß2-adrenergic receptor (ß2AR), a prototypic G-protein-coupled receptor (GPCR), is a powerful driver of bronchorelaxation, but the effectiveness of ß-agonist drugs in asthma is limited by desensitization and tachyphylaxis. We find that during activation, the ß2AR is modified by S-nitrosylation, which is essential for both classic desensitization by PKA as well as desensitization of NO-based signaling that mediates bronchorelaxation. Strikingly, S-nitrosylation alone can drive ß2AR internalization in the absence of traditional agonist. Mutant ß2AR refractory to S-nitrosylation (Cys265Ser) exhibits reduced desensitization and internalization, thereby amplifying NO-based signaling, and mice with Cys265Ser mutation are resistant to bronchoconstriction, inflammation, and the development of asthma. S-nitrosylation is thus a central mechanism in ß2AR signaling that may be operative widely among GPCRs and targeted for therapeutic gain.


Assuntos
Asma , Animais , Asma/induzido quimicamente , Asma/genética , Camundongos , Transdução de Sinais
4.
Circ Res ; 135(4): e94-e113, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38957991

RESUMO

BACKGROUND: Cerebral vascular malformations (CCMs) are primarily found within the brain, where they result in increased risk for stroke, seizures, and focal neurological deficits. The unique feature of the brain vasculature is the blood-brain barrier formed by the brain neurovascular unit. Recent studies suggest that loss of CCM genes causes disruptions of blood-brain barrier integrity as the inciting events for CCM development. CCM lesions are proposed to be initially derived from a single clonal expansion of a subset of angiogenic venous capillary endothelial cells (ECs) and respective resident endothelial progenitor cells (EPCs). However, the critical signaling events in the subclass of brain ECs/EPCs for CCM lesion initiation and progression are unclear. METHODS: Brain EC-specific CCM3-deficient (Pdcd10BECKO) mice were generated by crossing Pdcd10fl/fl mice with Mfsd2a-CreERT2 mice. Single-cell RNA-sequencing analyses were performed by the chromium single-cell platform (10× genomics). Cell clusters were annotated into EC subtypes based on visual inspection and GO analyses. Cerebral vessels were visualized by 2-photon in vivo imaging and tissue immunofluorescence analyses. Regulation of mTOR (mechanistic target of rapamycin) signaling by CCM3 and Cav1 (caveolin-1) was performed by cell biology and biochemical approaches. RESULTS: Single-cell RNA-sequencing analyses from P10 Pdcd10BECKO mice harboring visible CCM lesions identified upregulated CCM lesion signature and mitotic EC clusters but decreased blood-brain barrier-associated EC clusters. However, a unique EPC cluster with high expression levels of stem cell markers enriched with mTOR signaling was identified from early stages of the P6 Pdcd10BECKO brain. Indeed, mTOR signaling was upregulated in both mouse and human CCM lesions. Genetic deficiency of Raptor (regulatory-associated protein of mTOR), but not of Rictor (rapamycin-insensitive companion of mTOR), prevented CCM lesion formation in the Pdcd10BECKO model. Importantly, the mTORC1 (mTOR complex 1) pharmacological inhibitor rapamycin suppressed EPC proliferation and ameliorated CCM pathogenesis in Pdcd10BECKO mice. Mechanistic studies suggested that Cav1/caveolae increased in CCM3-depleted EPC-mediated intracellular trafficking and complex formation of the mTORC1 signaling proteins. CONCLUSIONS: CCM3 is critical for maintaining blood-brain barrier integrity and CCM3 loss-induced mTORC1 signaling in brain EPCs initiates and facilitates CCM pathogenesis.


Assuntos
Células Progenitoras Endoteliais , Hemangioma Cavernoso do Sistema Nervoso Central , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Animais , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Camundongos Knockout , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
5.
Circulation ; 150(7): 563-576, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38682330

RESUMO

BACKGROUND: Drug-induced QT prolongation (diLQT) is a feared side effect that could expose susceptible individuals to fatal arrhythmias. The occurrence of diLQT is primarily attributed to unintended drug interactions with cardiac ion channels, notably the hERG (human ether-a-go-go-related gene) channels that generate the delayed-rectifier potassium current (IKr) and thereby regulate the late repolarization phase. There is an important interindividual susceptibility to develop diLQT, which is of unknown origin but can be reproduced in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). We aimed to investigate the dynamics of hERG channels in response to sotalol and to identify regulators of the susceptibility to developing diLQT. METHODS: We measured electrophysiological activity and cellular distribution of hERG channels after hERG blocker treatment in iPS-CMs derived from patients with highest sensitivity (HS) or lowest sensitivity (LS) to sotalol administration in vivo (ie, on the basis of the measure of the maximal change in QT interval 3 hours after administration). Specific small interfering RNAs and CAVIN1-T2A-GFP adenovirus were used to manipulate CAVIN1 expression. RESULTS: Whereas HS and LS iPS-CMs showed similar electrophysiological characteristics at baseline, the late repolarization phase was prolonged and IKr significantly decreased after exposure of HS iPS-CMs to low sotalol concentrations. IKr reduction was caused by a rapid translocation of hERG channel from the membrane to the cytoskeleton-associated fractions upon sotalol application. CAVIN1, essential for caveolae biogenesis, was 2× more highly expressed in HS iPS-CMs, and its knockdown by small interfering RNA reduced their sensitivity to sotalol. CAVIN1 overexpression in LS iPS-CMs using adenovirus showed reciprocal effects. We found that treatment with sotalol promoted translocation of the hERG channel from the plasma membrane to the cytoskeleton fractions in a process dependent on CAVIN1 (caveolae associated protein 1) expression. CAVIN1 silencing reduced the number of caveolae at the membrane and abrogated the translocation of hERG channel in sotalol-treated HS iPS-CMs. CAVIN1 also controlled cardiomyocyte responses to other hERG blockers, such as E4031, vandetanib, and clarithromycin. CONCLUSIONS: Our study identifies unbridled turnover of the potassium channel hERG as a mechanism supporting the interindividual susceptibility underlying diLQT development and demonstrates how this phenomenon is finely tuned by CAVIN1.


Assuntos
Canal de Potássio ERG1 , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Miócitos Cardíacos , Sotalol , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Sotalol/farmacologia , Potenciais de Ação/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Masculino
6.
FASEB J ; 38(5): e23535, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466300

RESUMO

Caveolae are small flask-shaped invaginations of the surface membrane which are proposed to recruit and co-localize signaling molecules. The distinctive caveolar shape is achieved by the oligomeric structural protein caveolin, of which three isoforms exist. Aside from the finding that caveolin-3 is specifically expressed in muscle, functional differences between the caveolin isoforms have not been rigorously investigated. Caveolin-3 is relatively cysteine-rich compared to caveolins 1 and 2, so we investigated its cysteine post-translational modifications. We find that caveolin-3 is palmitoylated at 6 cysteines and becomes glutathiolated following redox stress. We map the caveolin-3 palmitoylation sites to a cluster of cysteines in its C terminal membrane domain, and the glutathiolation site to an N terminal cysteine close to the region of caveolin-3 proposed to engage in protein interactions. Glutathiolation abolishes caveolin-3 interaction with heterotrimeric G protein alpha subunits. Our results indicate that a caveolin-3 oligomer contains up to 66 palmitates, compared to up to 33 for caveolin-1. The additional palmitoylation sites in caveolin-3 therefore provide a mechanistic basis by which caveolae in smooth and striated muscle can possess unique phospholipid and protein cargoes. These unique adaptations of the muscle-specific caveolin isoform have important implications for caveolar assembly and signaling.


Assuntos
Caveolina 3 , Cisteína , Músculo Esquelético , Processamento de Proteína Pós-Traducional , Isoformas de Proteínas
7.
Proc Natl Acad Sci U S A ; 119(25): e2202295119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696574

RESUMO

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.


Assuntos
Cavéolas , Proteínas de Ligação a RNA , Cavéolas/química , Caveolina 1/química , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/química , Domínios Proteicos , Transporte Proteico , Proteínas de Ligação a RNA/química , Transdução de Sinais
8.
Am J Respir Cell Mol Biol ; 71(1): 95-109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546978

RESUMO

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.


Assuntos
Dasatinibe , Células Endoteliais , Canais de Potássio de Domínios Poros em Tandem , Dasatinibe/farmacologia , Dasatinibe/efeitos adversos , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Movimento Celular/efeitos dos fármacos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Proteínas do Tecido Nervoso
9.
J Biol Chem ; 299(4): 104574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870682

RESUMO

Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.


Assuntos
Caveolina 1 , Caveolinas , Doença , Humanos , Cavéolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Subunidades Proteicas/metabolismo , Doença/genética
10.
Biochem Biophys Res Commun ; 735: 150456, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39094230

RESUMO

Piezo1 channels are activated by mechanical stress and play a significant role in cardiac hypertrophy and fibrosis. However, the molecular mechanisms underlying Piezo1 activation on the cell membrane following pressure overload remain unclear. Caveolae are known to mitigate mechanical forces and regulate Piezo1 function. Therefore, this study aimed to investigate the interaction between caveolae and Piezo1 in the development of pressure overload-induced cardiac remodeling. We observed reduced colocalization between Piezo1 and Caveolin-3 in hypertrophic cardiomyocytes following abdominal aortic constriction and Angiotensin-II treatment, accompanied by increased Piezo1 function and expression. Furthermore, enhanced Piezo1 function was also noted upon caveolae disruption using methyl-beta-cyclodextrin (mßCD). Thus, our findings suggested that pressure overload led to Piezo1 translocation from caveolae, thereby augmenting its function and expression, which may contribute to cardiac remodeling.

11.
Biochem Biophys Res Commun ; 733: 150586, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39197200

RESUMO

The modified cell-penetrating peptide Pas2r12 can deliver antibodies (IgG, 150 kDa) and enhanced green fluorescent protein (EGFP1, 27 kDa) into the cytosol through caveolae-dependent endocytosis. In this study, we determined the effect of Caveolin-1 overexpression on the cytosolic delivery of EGFP by Pas2r12. Three types of Caveolin-1 overexpressing strains were isolated, including Cav1L (low), Cav1M (medium), and Cav1H (high), using HEK293 as the parent cell line. We found that the number of caveolae on the surface of the Caveolin-1-overexpressing strains was similar to that of HEK293. We examined the cytosolic delivery rate of EGFP by Pas2r12. In the Cav1L and Cav1M cells, there was little change compared with HEK293; however, in Cav1H, the rate was significantly decreased. Moreover, the amount of EGFP uptake into the cells (total intracellular EGFP) showed an increasing trend in Cav1H compared with HEK293. These results indicate that in Cav1H, the amount of EGFP uptake into the cells increases, whereas the cytosolic delivery rate of EGFP decreases. This suggests that high overexpression of Caveolin-1 inhibits the transition of EGFP from endosomes to the cytosol.


Assuntos
Caveolina 1 , Peptídeos Penetradores de Células , Citosol , Proteínas de Fluorescência Verde , Caveolina 1/metabolismo , Caveolina 1/genética , Humanos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Citosol/metabolismo , Células HEK293 , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/química , Endocitose , Transporte Proteico , Cavéolas/metabolismo
12.
Biol Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38970809

RESUMO

Caveolae are 50-80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.

13.
Biochem Soc Trans ; 52(1): 1-13, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38174740

RESUMO

Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.


Assuntos
Síndrome de Down , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia
14.
Biochem Soc Trans ; 52(2): 947-959, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38526159

RESUMO

Caveolin-1 (Cav1) is a 22 kDa intracellular protein that is the main protein constituent of bulb-shaped membrane invaginations known as caveolae. Cav1 can be also found in functional non-caveolar structures at the plasma membrane called scaffolds. Scaffolds were originally described as SDS-resistant oligomers composed of 10-15 Cav1 monomers observable as 8S complexes by sucrose velocity gradient centrifugation. Recently, cryoelectron microscopy (cryoEM) and super-resolution microscopy have shown that 8S complexes are interlocking structures composed of 11 Cav1 monomers each, which further assemble modularly to form higher-order scaffolds and caveolae. In addition, Cav1 can act as a critical signaling regulator capable of direct interactions with multiple client proteins, in particular, the endothelial nitric oxide (NO) synthase (eNOS), a role believed by many to be attributable to the highly conserved and versatile scaffolding domain (CSD). However, as the CSD is a hydrophobic domain located by cryoEM to the periphery of the 8S complex, it is predicted to be enmeshed in membrane lipids. This has led some to challenge its ability to interact directly with client proteins and argue that it impacts signaling only indirectly via local alteration of membrane lipids. Here, based on recent advances in our understanding of higher-order Cav1 structure formation, we discuss how the Cav1 CSD may function through both lipid and protein interaction and propose an alternate view in which structural modifications to Cav1 oligomers may impact exposure of the CSD to cytoplasmic client proteins, such as eNOS.


Assuntos
Caveolina 1 , Transdução de Sinais , Animais , Humanos , Cavéolas/metabolismo , Caveolina 1/metabolismo , Caveolina 1/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Óxido Nítrico Sintase Tipo III/metabolismo , Domínios Proteicos
15.
Rev Med Virol ; 33(2): e2413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504273

RESUMO

Lipid rafts are ubiquitous in cells. They are identified as cholesterol and glycosphingolipid enriched microdomains on cellular membranes. They serve as platforms for cellular communications by functioning in signal transduction and membrane trafficking. Such structural organisation fulfils cellular needs for normal function, but at the same time increases vulnerability of cells to pathogen invasion. Viruses rely heavily on lipid rafts in basically every stage of the viral life cycle for successful infection. Various mechanisms of lipid rafts modification exploited by diverse viruses for attachment, internalisation, membrane fusion, genome replication, assembly and release have been brought to light. This review focuses on virus-raft interactions and how a wide range of viruses manipulate lipid rafts at distinct stages of infection. The importance of virus-raft interactions in viral infections has inspired researchers to discover and develop antivirals that target this interaction, such as statins, methyl-ß-cyclodextrin, viperin, 25-hydroxycholesterol and even anti-malarial drugs. The therapeutic modulations of lipid rafts as potential antiviral intervention from in vitro and in vivo evidence are discussed herein.


Assuntos
Antivirais , Microdomínios da Membrana , Humanos , Microdomínios da Membrana/química , Membrana Celular , Transdução de Sinais
16.
Curr Top Membr ; 93: 1-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39181576

RESUMO

Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.


Assuntos
Endocitose , Humanos , Animais , Nefropatias/metabolismo , Nefropatias/patologia , Rim/metabolismo , Rim/patologia , Receptores de Superfície Celular/metabolismo
17.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39201459

RESUMO

Caveolin is a structural protein within caveolae that may be involved in transmembrane molecular transport and/or various intercellular interactions within cells. Specific mutations of caveolin-3 in muscle fibers are well known to cause limb-girdle muscular dystrophy. Altered expression of caveolin-3 has also been detected in Duchenne muscular dystrophy, which may be a part of the pathological process leading to muscle weakness. Interestingly, it has been shown that the renovation of nitric oxide synthase (NOS) in sarcolemma with muscular dystrophy could improve muscle health, suggesting that NOS may be involved in the pathology of muscular dystrophy. Here, we summarize the notable function of caveolin and/or NOS in skeletal muscle fibers and discuss their involvement in the pathology as well as possible tactics for the innovative treatment of muscular dystrophies.


Assuntos
Caveolina 3 , Distrofias Musculares , Óxido Nítrico Sintase , Animais , Humanos , Cavéolas/metabolismo , Caveolina 3/metabolismo , Caveolina 3/genética , Caveolinas/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/genética
18.
Molecules ; 29(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203005

RESUMO

Some neurodegenerative diseases may be characterized by continuing behavioral and cognitive dysfunction that encompasses memory loss and/or apathy. Alzheimer's disease is the most typical type of such neurodegenerative diseases that are characterized by deficits of cognition and alterations of behavior. Despite the huge efforts against Alzheimer's disease, there has yet been no successful treatment for this disease. Interestingly, several possible risk genes for cognitive dysfunction are frequently expressed within brain cells, which may also be linked to cholesterol metabolism, lipid transport, exosomes, and/or caveolae formation, suggesting that caveolae may be a therapeutic target for cognitive dysfunctions. Interestingly, the modulation of autophagy/mitophagy with the alteration of glucagon-like peptide-1 (GLP-1) and N-methyl-d-aspartate (NMDA) receptor signaling may offer a novel approach to preventing and alleviating cognitive dysfunction. A paradigm showing that both GLP-1 and NMDA receptors at caveolae sites may be promising and crucial targets for the treatment of cognitive dysfunctions has been presented here, which may also be able to modify the progression of Alzheimer's disease. This research direction may create the potential to move clinical care toward disease-modifying treatment strategies with maximal benefits for patients without detrimental adverse events for neurodegenerative diseases.


Assuntos
Cavéolas , Disfunção Cognitiva , Peptídeo 1 Semelhante ao Glucagon , Doenças Neurodegenerativas , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Animais , Doenças Neurodegenerativas/metabolismo , Cavéolas/metabolismo , Doença de Alzheimer/metabolismo , Transdução de Sinais
19.
J Clin Biochem Nutr ; 75(1): 7-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39070533

RESUMO

Caveolae, consisting of caveolin-1 proteins, are ubiquitously present in endothelial cells and contribute to normal cardiovascular functions by acting as a platform for cellular signaling pathways as well as transcytosis and endocytosis. However, caveolin-1 is thought to have a proatherogenic role by inhibiting endothelial nitric oxide synthase activity and Nrf2 activation, or by promoting inflammation through NF-κB activation. Dietary polyphenols were suggested to exert anti-atherosclerotic effects by a mechanism involving the inhibition of endothelial dysfunction, by which they can regulate redox-sensitive signaling pathways in relation to NF-κB and Nrf2 activation. Some monomeric polyphenols and microbiota-derived catabolites from monomeric polyphenols or polymeric tannins might be responsible for the inhibition, because they can be transferred into the circulation from the digestive tract. Several polyphenols were reported to modulate caveolin-1 expression or its localization in caveolae. Therefore, we hypothesized that circulating polyphenols affect caveolae functions by altering its structure leading to the release of caveolin-1 from caveolae, and attenuating redox-sensitive signaling pathway-dependent caveolin-1 overexpression. Further studies using circulating polyphenols at a physiologically relevant level are necessary to clarify the mechanism of action of dietary polyphenols targeting caveolae and caveolin-1.

20.
J Mol Cell Cardiol ; 177: 38-49, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842733

RESUMO

RATIONALE: Flask-shaped invaginations of the cardiomyocyte sarcolemma called caveolae require the structural protein caveolin-3 (Cav-3) and host a variety of ion channels, transporters, and signaling molecules. Reduced Cav-3 expression has been reported in models of heart failure, and variants in CAV3 have been associated with the inherited long-QT arrhythmia syndrome. Yet, it remains unclear whether alterations in Cav-3 levels alone are sufficient to drive aberrant repolarization and increased arrhythmia risk. OBJECTIVE: To determine the impact of cardiac-specific Cav-3 ablation on the electrophysiological properties of the adult mouse heart. METHODS AND RESULTS: Cardiac-specific, inducible Cav3 homozygous knockout (Cav-3KO) mice demonstrated a marked reduction in Cav-3 expression by Western blot and loss of caveolae by electron microscopy. However, there was no change in macroscopic cardiac structure or contractile function. The QTc interval was increased in Cav-3KO mice, and there was an increased propensity for ventricular arrhythmias. Ventricular myocytes isolated from Cav-3KO mice exhibited a prolonged action potential duration (APD) that was due to reductions in outward potassium currents (Ito, Iss) and changes in inward currents including slowed inactivation of ICa,L and increased INa,L. Mathematical modeling demonstrated that the changes in the studied ionic currents were adequate to explain the prolongation of the mouse ventricular action potential. Results from human iPSC-derived cardiomyocytes showed that shRNA knockdown of Cav-3 similarly prolonged APD. CONCLUSION: We demonstrate that Cav-3 and caveolae regulate cardiac repolarization and arrhythmia risk via the integrated modulation of multiple ionic currents.


Assuntos
Cavéolas , Síndrome do QT Longo , Animais , Humanos , Camundongos , Cavéolas/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Arritmias Cardíacas/metabolismo , Potenciais de Ação , Canais Iônicos/metabolismo , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa