Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Cancer ; 22(1): 405, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35421941

RESUMO

BACKGROUND: There is strong evidence that disease progression, drug response and overall clinical outcomes of CML disease are not only decided by BCR/ABL1 oncoprotein but depend on accumulation of additional genetic and epigenetic aberrations. DNA hydroxymethylation is implicated in the development of variety of diseases. DNA hydroxymethylation in gene promoters plays important roles in disease progression, drug response and clinical outcome of various diseases. Therefore in this study, we aimed to explore the role of aberrant hydroxymethylation in promoter regions of different tumor suppressor genes in relation to CML disease progression, response to imatinib therapy and clinical outcome. METHODS: We recruited 150 CML patients at different clinical stages of the disease. Patients were followed up for 48 months and haematological/molecular responses were analysed. Haematological response was analysed by peripheral blood smear. BCR/ABL1 specific TaqMan probe based qRT-PCR was used for assessing the molecular response of CML patients on imatinib therapy. Promoter hydroxymethylation of the genes was characterized using MS-PCR. RESULTS: We observed that promoter hydroxymethylation of DAPK1, RIZ1, P16INK4A, RASSF1A and p14ARFARF genes characterize advanced CML disease and poor imatinib respondents. Although, cytokine signalling (SOCS1) gene was hypermethylated in advanced stages of CML and accumulated in patients with poor imatinib response, but the differences were not statistically significant. Moreover, we found hypermethylation of p14ARF, RASSF1 and p16INK4A genes and cytokine signalling gene (SOCS1) significantly associated with poor overall survival of CML patients on imatinib therapy. The results of this study are in agreement of the role of aberrant DNA methylation of different tumor suppressor genes as potential biomarkers of CML disease progression, poor imatinib response and overall clinical outcome. CONCLUSION: In this study, we report that promoter hydroxymethylation of DAPK1, RIZ1, P16INK4A, RASSF1A and p14ARFARF genes is a characteristic feature of CML disease progressions, defines poor imatinib respondents and poor overall survival of CML patients to imatinib therapy.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Apoptose/genética , Ciclo Celular , Doença Crônica , Citocinas , DNA/uso terapêutico , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inquéritos e Questionários , Proteína Supressora de Tumor p14ARF/uso terapêutico
2.
Mol Biol Rep ; 49(4): 2695-2709, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040004

RESUMO

BACKGROUND: Artemisinin (ART) is an anti-malaria natural compound with a moderate anticancer action. As a metabolite of ART, dihydroartemisinin (DHA) may have stronger anti-colorectal cancer (CRC) bioactivities. However, the effects of DHA and ART on CRC chemoprevention, including adaptive immune regulation, have not been systematically evaluated and compared. METHODS: Coupled with a newly-established HPLC analytical method, enteric microbiome biotransformation was conducted to identify if the DHA is a gut microbial metabolite of ART. The anti-CRC potential of these compounds was compared using two different human CRC cell lines for cell cycle arrest, apoptotic induction, and anti-inflammation activities. Naive CD4+ T cells were also obtained for testing the compounds on the differentiation of Treg, Th1 and Th17. RESULTS: Using compound extraction and analytical methods, we observed for the first time that ART completely converted into its metabolites by gut microbiome within 24 h, but no DHA was detected. Although ART did not obviously influence cancer cell growth in the concentration tested, DHA very significantly inhibited the cancer cell growth at relatively low concentrations. DHA included G2/M cell cycle arrest via upregulation of cyclin A and apoptosis. Both ART and DHA downregulated the pro-inflammatory cytokine expression. The DHA significantly promoted Treg cell proliferation, while both ART and DHA inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: As a metabolite of ART, DHA possessed stronger anti-CRC activities. The DHA significantly inhibited cell growth via cell cycle arrest, apoptosis induction and anti-inflammation actions. The adaptive immune regulation is a related mechanism of actions for the observed effects.


Assuntos
Artemisininas , Neoplasias do Colo , Apoptose , Artemisininas/farmacologia , Quimioprevenção , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Humanos
3.
Molecules ; 27(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35745057

RESUMO

Thirty-three benzophenanthridine alkaloid derivatives (1a-1u and 2a-2l) were synthesized, and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i-l, 2a, and 2i-l) with IC50 values in the range of 0.18-7.94 µM showed significant inhibitory effects on the proliferation of both cancer cell lines. Analysis of the primary structure-activity relationships revealed that different substituent groups at the C-6 position might have an effect on the antileukemia activity of the corresponding compounds. In addition, the groups at the C-7 and C-8 positions could influence the antileukemia activity. Among these compounds, 2j showed the strongest in vitro antiproliferative activity against Jurkat Clone E6-1 and THP-1 cells with good IC50 values (0.52 ± 0.03 µM and 0.48 ± 0.03 µM, respectively), slightly induced apoptosis, and arrested the cell-cycle, all of which suggests that compound 2j may represent a potentially useful start point to undergo further optimization toward a lead compound.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Benzofenantridinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade
4.
Int J Vitam Nutr Res ; 91(3-4): 293-303, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32008465

RESUMO

Vitamin C (Vit C) has been widely used in the treatment and prevention of cancer. Nevertheless, the clinical results are still inconclusive. Using non-cancer (HOSEpiC) and cancer OVCAR-3 cells cultured in basal medium or in ovarian cancer-associated fibroblast (CAF)-supplemented medium, we estimated the dose-dependent effect of Vit C on sodium-ascorbate co-transporters (SVCT1, SVCT2) and glucose transporter (GLUT1) protein expression. Additionally, the action of Vit C on cell proliferation (alamarBlue), membrane permeability (LDH assay), caspase3 activity, the selected cell cycle and apoptosis pathway, poly(ADP-ribose) polymerase-1 (PARP) protein expression, and reactive oxygen species (ROS) activity was determined. We showed different effects of Vit C on the expression of the co-transporter in non-cancer and cancer cells. In non-cancer cells, Vit C, at a pharmacological concentration, increased SVCT2 and decreased GLUT1, while the opposite effect was noted in cancer cells. In cancer cells, Vit C, in a pharmacological dose, decreased cell proliferation through an inhibitory effect on cyclin-dependent kinase 2 (CDK2) (4.4-fold; p < 0.01), mainly due to the stimulatory effect on the expression of cyclin-dependent kinase (CDK) inhibitors, such as p21 and p53 (3.2- and 2.8-fold, respectively; p < 0.001), but not caspase pathway. The tumour microenvironment caused inefficiency of the lower doses of Vit C in ovarian cancer cells. At a pharmacological dose of 1 mM, Vit C decreased PARP expression (1.5-fold; p < 0.05). We suggest that it's nontoxic effects on non-cancer cells may be an indicator of its prophylactic use, while in a pharmacological dose Vit C should be considered a possible adjunctive drug in ovarian cancer. However, it is necessary to consider the effect of the CAF.


Assuntos
Neoplasias Ovarianas , Preparações Farmacêuticas , Apoptose , Ácido Ascórbico , Caspase 3 , Linhagem Celular Tumoral , Suplementos Nutricionais , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral
5.
Bioorg Chem ; 105: 104369, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091670

RESUMO

A series of novel thiazolo[3,2-b][1,2,4]-triazoles 3a-n has been synthesized and evaluated in vitro as potential antiproliferative. Compounds 3b-d exhibited significant antiproliferative activity. Compound 3b was the most potent with Mean GI50 1.37 µM comparing to doxorubicin (GI50 1.13 µM). The transcription effects of 3b, 3c and 3d on the p53 were assessed and compared with the reference doxorubicin. The results revealed an increase of 15-27 in p53 level compared to the test cells and that p53 protein level of 3b, 3c and 3d was significantly inductive (1419, 571 and 787 pg/mL, respectively) in relation to doxorubicin (1263 pg/mL). The docking study of the new compounds 3a-n revealed high binding scores for the new compounds toward p53 binding domain in MDM2. The docking analyses revealed the highest affinities for compounds 3b-d which induced p53 activity in MCF-7 cancer cells. Compound 3b which exhibited the highest antiproliferative activity and induced the highest increase in p53 level in MCF-7 cells showed also the highest affinity to MDM2.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Triazóis/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Proteína Supressora de Tumor p53/metabolismo
6.
J Cell Biochem ; 119(10): 8659-8671, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30058741

RESUMO

Sex hormones, especially 17ß-estradiol (E2) and testosterone (TEST), play crucial roles in the oncogenesis and progression of liver cancer via hormone-related receptors. As women have a lower rate of hepatocellular carcinoma (HCC) than men, estrogens might attenuate the occurrence and development of HCC. This study aimed to investigate the inhibitory effects and mechanisms of E2 on TEST-induced HCC development; the HepG2 cell line was used as an in vitro model. Five endpoints, including cell viability, cell apoptosis, cell cycle, receptor protein expression, and messenger RNA transcription, were investigated. Different roles and the ratios of androgen receptor (AR) and 3 estrogen receptor (ER) subtypes were also estimated. Cell viability assay showed that co-treatment of E2 and TEST resulted in a significant inhibition of E2-induced or TEST-induced cell proliferation. Flow cytometry analysis revealed that combined treatment of E2 and TEST blocked the cell cycle in the G0/G1 phase as well as induced cell early apoptosis, characterized by decreased cyclin-dependent kinase transcription and the ratio of Bcl-2/Bax. Real-time quantitative polymerase chain reaction and Western blot analysis results further demonstrated that estrogen receptor estrogen receptor α66 (ERα66) and estrogen receptor ß (ERß) were upregulated, whereas AR and estrogen receptor α36 (ERα36) were downregulated, irrespective of whether E2 and TEST were considered separately or together, whereas the combined treatment of E2 and TEST resulted in a decrease in the ERα66/ERß ratio, the ERα66/ERα36 ratio, and the ERß/ERα36 ratio, but with an increase in the ERα66/AR ratio, the ERα36/AR ratio, and the ERß/AR ratio. To sum up, E2 could inhibit TEST-induced cell proliferation by modulating the ratio of different hormone-related receptors.


Assuntos
Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Testosterona/farmacologia , Análise de Variância , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Biol Chem ; 289(24): 17078-86, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24811171

RESUMO

Glucocorticoids contribute to adipocyte differentiation by cooperating with transcription factors, such as CCAAT/enhancer-binding protein ß (C/EBPß), to stimulate transcription of the gene encoding peroxisome proliferator-activated receptor (PPARγ), a master regulator of adipogenesis. However, the mechanism of PPARγ gene regulation by glucocorticoids, the glucocorticoid receptor (GR), and its coregulators is poorly understood. Here we show that two GR binding regions (GBRs) in the mouse PPARγ gene were responsive to glucocorticoid, and treatment of 3T3-L1 preadipocytes with glucocorticoid alone induced GR occupancy and chromatin remodeling at PPARγ GBRs, which also contain binding sites for C/EBP and PPARγ proteins. GR recruited cell cycle and apoptosis regulator 1 (CCAR1), a transcription coregulator, to the PPARγ gene GBRs. Notably, CCAR1 was required for GR occupancy and chromatin remodeling at one of the PPARγ gene GBRs. Moreover, depletion of CCAR1 markedly suppressed differentiation of mouse mesenchymal stem cells and 3T3-L1 preadipocytes to mature adipocytes and decreased induction of PPARγ, C/EBPα, and C/EBPδ. Although CCAR1 was required for stimulation of several GR-regulated adipogenic genes in 3T3-L1 preadipocytes by glucocorticoid, it was not required for GR-activated transcription of certain anti-inflammatory genes in human A549 lung epithelial cells. Overall, our results highlighted the novel and specific roles of GR and CCAR1 in adipogenesis.


Assuntos
Adipócitos/metabolismo , Adipogenia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Adipócitos/citologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Glucocorticoides/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , PPAR gama/genética , PPAR gama/metabolismo
8.
Cancer Chemother Pharmacol ; 93(5): 411-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191768

RESUMO

BACKGROUND: Artemisinin (ART) and its derivatives are important antimalaria agents and have received increased attention due to their broad biomedical effects, such as anticancer and anti-inflammation activities. Recently, ruthenium-derived complexes have attracted considerable attention as their anticancer potentials were observed in preclinical and clinical studies. METHODS: To explore an innovative approach in colorectal cancer (CRC) management, we synthesized ruthenium-dihydroartemisinin complex (D-Ru), a novel metal-based artemisinin derivative molecule, and investigated its anticancer, anti-inflammation, and adaptive immune regulatory properties. RESULTS: Compared with its parent compound, ART, D-Ru showed stronger antiproliferative effects on the human CRC cell lines HCT-116 and HT-29. The cancer cell inhibition of D-Ru comprised G1 cell cycle arrest via the downregulation of cyclin A and the induction of apoptosis. ART and D-Ru downregulated the expressions of pro-inflammatory cytokines IL-1ß, IL-6, and IL-8. Although ART and D-Ru did not suppress Treg cell differentiation, they significantly inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: Our results demonstrated that D-Ru, a novel ruthenium complexation of ART, remarkably enhanced its parent compound's anticancer action, while the anti-inflammatory potential was not compromised. The molecular mechanisms of action of D-Ru include inhibition of cancer cell growth via cell cycle arrest, induction of apoptosis, and anti-inflammation via regulation of adaptive immunity.


Assuntos
Apoptose , Artemisininas , Neoplasias do Colo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Artemisininas/farmacologia , Artemisininas/química , Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Células HT29 , Animais , Citocinas/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Camundongos
9.
Biochem Biophys Res Commun ; 436(4): 607-12, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23764399

RESUMO

Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30min to 5h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1 suggesting that PTH utilized an Extracellular Signal Regulated Kinase (ERK)-independent but p38 dependent pathway to regulate CARP-1 protein expression in osteoblasts. Immunofluorescence staining of differentiated osteoblasts further revealed nuclear to cytoplasmic translocation of CARP-1 protein following PTH treatment. Collectively, our studies identified CARP-1 for the first time in osteoblasts and suggest its potential role in PTH signaling and bone anabolic action.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Osteoblastos/metabolismo , Hormônio Paratireóideo/fisiologia , Células 3T3 , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Eur J Med Chem ; 259: 115712, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567059

RESUMO

Several studies have indicated the potential therapeutic outcomes of combining selective COX-2 inhibitors with tubulin-targeting anticancer agents. In the current study, a novel series of thiazolidin-4-one-based derivatives (7a-q) was designed by merging the pharmacophoric features of some COXs inhibitors and tubulin polymerization inhibitors. Compounds 7a-q were synthesized and evaluated for their cytotoxic activity against MCF7, HT29, and A2780 cancer cell lines (IC50 = 0.02-17.02 µM). The cytotoxicity of 7a-q was also assessed against normal MRC5 cells (IC50 = 0.47-13.46 µM). Compounds 7c, 7i, and 7j, the most active in the MTT assay, significantly reduced the number of HT29 colonies compared to the control. Compounds 7c, 7i, and 7j also induced significant decreases in the tumor volumes and masses in Ehrlich solid carcinoma-bearing mice compared to the control. The three compounds also exhibited significant anti-HT29 migration activity in the wound-healing assay. They have also induced cell cycle arrest in HT29 cells at the S and G2/M phases. In addition, they induced significant increases in both early and late apoptotic events in HT29 cells compared to the control, where 7j showed the highest effect. On the other hand, compound 7j (1 µM) displayed weak inhibitory activity against tubulin polymerization compared to colchicine (3 µM). On the other hand, compounds 7a-q inhibited the activity of COX-2 (IC50 = 0.42-29.11 µM) compared to celecoxib (IC50 = 0.86 µM). In addition, 7c, 7i, and 7j showed moderate inhibition of inflammation in rats compared to indomethacin, with better GIT safety profiles. Molecular docking analysis revealed that 7c, 7i, and 7j have higher binding free energies towards COX-2 than COX-1. These above results suggested that 7j could serve as a potential anticancer drug candidate.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Ratos , Camundongos , Humanos , Animais , Feminino , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
11.
Colloids Surf B Biointerfaces ; 220: 112864, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272286

RESUMO

Chlorambucil (CLB) is widely used in the treatment of solid tumors. However, CLB has poor water solubility, short half-life and side effects such as leucopenia and thrombocytopenia, in addition to the inhibition of tumor immune microenvironment. In our study, chlorambucil-chitosan (CLB-CS) prodrug micelles were successfully prepared, and glycyrrhetinic acid (GA) was selected, which could improve the immunosuppressive microenvironment and actively targeted liver cancer cells. At the tumor site, CLB blocked the cell cycle and promoted apoptosis. In addition, GA improved the tumor microenvironment by increasing the proportion of CD4+T and CD8+T cells at the tumor site, and promoting the differentiation of CD4+T cells into Th1 cells, thereby reducing the proportion of Treg and Th2 cell subsets, so as to offset the adverse factors of CLB against tumor immunity. By interfering with DNA replication and modulating the tumor microenvironment, GA/CLB-CS micelles enabled the effective treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Ácido Glicirretínico , Neoplasias Hepáticas , Pró-Fármacos , Humanos , Clorambucila/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ácido Glicirretínico/farmacologia , Micelas , Microambiente Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Replicação do DNA
12.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35745636

RESUMO

Hepatocellular carcinoma is a leading cause of cancer death, and the disease progression has been related to glycophenotype modifications. Previously synthesized bisimidazolium salts (C20 and C22) have been shown to selectively inhibit the activity of glycosyltransferases in cultured cancer cell homogenates. The current study investigated the anticancer effects of C20/C22 and the possible pathways through which these effects are achieved. The therapeutic value of C20/C22 in terms of inhibiting cancer cell proliferation, metastasis, and angiogenesis, as well as inducing apoptosis, were examined with hepatic cancer cell line HepG2 and a xenograft mouse model. C20/C22 treatment downregulated the synthesis of SLex and Ley sugar epitopes and suppressed selectin-mediated cancer cell metastasis. C20/C22 inhibited HepG2 proliferation, induced cell-cycle arrest, increased intracellular ROS level, led to ER stress, and eventually induced apoptosis through the intrinsic pathway. Furthermore, C20/C22 upregulated the expressions of death receptors DR4 and DR5, substantially increasing the sensitivity of HepG2 to TRAIL-triggered apoptosis. In vivo, C20/C22 effectively inhibited tumor growth and angiogenesis in the xenograft mouse model without adverse effects on major organs. In summary, C20 and C22 are new promising anti-hepatic cancer agents with multiple mechanisms in controlling cancer cell growth, metastasis, and apoptosis, and they merit further development into anticancer drugs.

13.
Cardiovasc Toxicol ; 22(12): 962-970, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36350556

RESUMO

The heart of higher vertebrates develops early as a tubular structure, which requires cellular and molecular events for proliferation, differentiation and apoptosis for growth, and individualization of cardiac chambers. Exposure to different stressors can cause disturbances in the normal development and functionality of the cardiovascular system. This study aimed to characterize the impact of methylmercury (MeHg) on heart development, specifically related to tissue morphology and parameters of vascular integrity and contractility, also focusing on cell cycle and apoptosis, using Gallus domesticus embryos as a model. The results showed morphological alterations, reduction in the thickness of the ventricular walls, and trabeculae changes in the hearts of embryos exposed to 0.1 µg MeHg/50 µL saline solution. These impacts were associated with increased contents of proteins related to cell cycle arrest and reduced cardiomyocyte proliferation. In addition, the contents of endothelial mediators for contractility and vascular integrity were imbalanced. The quantity and morphology of mitochondria of cardiomyocytes were injured. Together, these negative measurements impacted the reduction of heartbeats. In general, the parameters identified here demonstrate the relevance of combined molecular cellular tissue and physiological diagnosis for a better understanding of the cardiotoxicity of MeHg during development.


Assuntos
Compostos de Metilmercúrio , Animais , Compostos de Metilmercúrio/toxicidade , Miócitos Cardíacos , Apoptose , Diferenciação Celular , Cardiotoxicidade
14.
Pathogens ; 11(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35335638

RESUMO

The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.

15.
Front Oncol ; 12: 906807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033518

RESUMO

ASH1L is a member of the Trithorax-group protein and acts as a histone methyltransferase for gene transcription activation. It is known that ASH1L modulates H3K4me3 and H3K36me2/3 at its gene targets, but its specific mechanism of histone recognition is insufficiently understood. In this study, we found that the ASH1L plant homeodomain (PHD) finger interacts with mono-, di-, and trimethylated states of H3K4 peptides with comparable affinities, indicating that ASH1L PHD non-selectively binds to all three methylation states of H3K4. We solved nuclear magnetic resonance structures picturing the ASH1L PHD finger binding to the dimethylated H3K4 peptide and found that a narrow binding groove and residue composition in the methylated-lysine binding pocket restricts the necessary interaction with the dimethyl-ammonium moiety of K4. In addition, we found that the ASH1L protein is overexpressed in castrate-resistant prostate cancer (PCa) PC3 and DU145 cells in comparison to PCa LNCaP cells. The knockdown of ASH1L modulated gene expression and cellular pathways involved in apoptosis and cell cycle regulation and consequently induced cell cycle arrest, cell apoptosis, and reduced colony-forming abilities in PC3 and DU145 cells. The overexpression of the C-terminal core of ASH1L but not the PHD deletion mutant increased the overall H3K36me2 level but had no effect on the H3K4me2/3 level. Overall, our study identifies the ASH1L PHD finger as the first native reader that non-selectively recognizes the three methylation states of H3K4. Additionally, ASH1L is required for the deregulation of cell cycle and survival in PCas.

16.
Poult Sci ; 100(10): 101374, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411963

RESUMO

Avian leukemia is a common malignant disease, and and its regulatory mechanism is complex. As the most extensive tumor suppressor gene in cancer research, p53 can control multiple functions such as that of DNA repair, induction of apoptosis, cell cycle arrest and so on. In view of the diversity associated with varied function of p53, this study analyzed the possible effect of gene on ALV-J replication and its regulatory mechanism. We successfully constructed a p53 knockout DF-1 cell line (p53-KO-DF-1 cells) by using CRISPR-Cas9 system. When ALV-J was co-infected with DF-1 and p53-KO-DF-1 cells, it was found that compared with wild-type DF-1 cells, the viral copy number of p53-KO-DF-1 cells infected with ALV-J increased significantly 48 h after infection, whereas the expression of innate immune factors such as Il-2,TNF- α, IFN- γ and MX1 decreased significantly. Detection of p53-related tumor genes indicated that after p53 deletion, the expression of c-myc, bcl-2, and bak increased significantly, while the expression of p21 and p27 was noted to be decreased. The cell cycle distribution and apoptosis of the 2 cell lines was detected by flow cytometry analysis. The results showed that p53 knockout prevented G0/G1 and G2 M phase arrest induced by ALV-J, and substantially decreased the rate of apoptosis. Overall, the results indicated that p53 gene can effectively inhibits ALV-J replication by regulating important cellular processes, and p53 gene related proteins involved in cell cycle activity may function as the key targets for the prevention and treatment of ALV-J.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Animais , Linhagem Celular , Galinhas , Proteína Supressora de Tumor p53/genética
17.
Front Genet ; 12: 635429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290732

RESUMO

Keratin 18 (KRT18), one of the most abundant keratins in epithelial and endothelial cells, has been reported to be aberrantly expressed in many malignancies and extensively regarded as a biomarker and important regulator in multiple cancers, including gastric cancer (GC). But the molecular regulatory mechanisms of KRT18 in GC patients and cells are largely unknown. In the present study, we analyzed the expression level of KRT18 in 450 stomach adenocarcinoma tissue samples from TCGA database and found a significantly higher expression level in tumor tissues. We then explored the potential functions of KRT18 in AGS cells (human gastric adenocarcinoma cell line) by KRT18 knockdown using siRNA and whole transcriptome RNA-seq analysis. Notably, KRT18 selectively regulates expression of cell proliferation and apoptotic genes. Beyond this, KRT18 affects the alternative splicing of genes enriched in apoptosis, cell cycle, and other cancer-related pathways, which were then validated by reverse transcription-quantitative polymerase chain reaction approach. We validated KRT18-KD promoted apoptosis and inhibited proliferation in AGS cells. We then used RNA-seq data of GC samples to further demonstrate the modulation of KRT18 on alternative splicing regulation. These results together support the conclusion that KRT18 extensively modulates diverse alternative splicing events of genes enriched in proliferation and apoptosis processes. And the dysregulated splicing factors at transcriptional or posttranscriptional level by KRT18 may contribute to the alternative splicing change of many genes, which expands the functional importance of keratins in apoptotic and cell cycle pathways at the posttranscriptional level in GC.

18.
Leuk Lymphoma ; 61(8): 1810-1822, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32249639

RESUMO

Fatty acid synthesis is crucial in supporting the survival and proliferation of multiple forms of cancer. The high metabolic demands of fatty acid synthesis are regulated by the AMP-activated kinase and activity of the fatty acid synthase enzyme. In this study, the roles of these enzymes in diffuse large B-cell lymphoma (DLBCL) were investigated by genetic knock-down and pharmacological activation of AMP-activated kinase by metformin, and selective inhibition of fatty acid synthase using the novel drug Fasnall. We observed distinct heterogeneity and adaptive plasticity of lipid metabolism in a panel of DLBCL cell lines and demonstrate the therapeutic potential of inhibiting fatty acid synthesis in a subset of DLBCL cells. The translational relevance of these in vitro data is supported by the strong correlation between AMP-activated protein kinase expression in primary DLBCL samples and disease relapse. Inhibition of fatty acid synthase with Fasnall may represent a therapeutic option for DLBCL that preferentially subverts to de novo fatty acid synthesis.


Assuntos
Linfoma Difuso de Grandes Células B , Preparações Farmacêuticas , Monofosfato de Adenosina , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Ácido Graxo Sintases/genética , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Proteínas Quinases
19.
Leuk Lymphoma ; 61(2): 257-262, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31533509

RESUMO

Venetoclax is an oral selective BCL2 inhibitor which is highly efficacious in a variety of B-cell lymphoproliferative diseases (B-LPDs) due to their collective dependency on BCL2 over-expression as a central feature of their pathogenesis. However, despite its general efficacy across the spectrum of B-LPDs, certain subtypes are characterized by significantly higher response rates (RRs) to venetoclax (e.g. chronic lymphocytic leukemia) than others (e.g. diffuse large B-cell lymphoma). This variation in RR is the result of an underlying spectrum of primary (intrinsic) resistance to venetoclax mediated by numerous intracellular and microenvironmental mechanisms. Moreover, despite an initial response, most patients will experience disease progression on venetoclax therapy thus manifesting secondary (acquired) resistance. This review describes the molecular mechanisms in B-LPDs that drive both of these types of clinical resistance, the understanding of which is central to optimizing outcomes using this therapy.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos B , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
20.
Leuk Lymphoma ; 61(6): 1313-1322, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32031033

RESUMO

B-cell leukemia/lymphoma-2 (BCL-2) inhibition with the targeted oral agent venetoclax (ABT-199) has reshaped the treatment landscape for multiple hematological malignancies. Venetoclax in combination with hypomethylating agents (HMAs) or low-dose cytarabine (LDAC) has led to improved outcomes in acute myeloid leukemia (AML) and represents a new standard of care for frontline AML treatment in older patients or those unfit for intensive chemotherapy. Combinations of venetoclax with standard induction therapy or targeted agents such as FLT-3 inhibitors and IDH inhibitors are leading to improved clinical outcomes, representing major advancements in a field that has been without significant changes in treatments for the last 30 years. This review provides biological and clinical rationale for current venetoclax based treatments in AML, addresses common adverse events encountered with venetoclax based therapy, and explores emerging clinical data regarding combinations of novel targeted therapeutics used in conjunction with venetoclax for the treatment of AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa